Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Meta-QTL analysis of tan spot resistance in wheat

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Shifting the limits in wheat research and breeding using a fully annotated reference genome

          An annotated reference sequence representing the hexaploid bread wheat genome in 21 pseudomolecules has been analyzed to identify the distribution and genomic context of coding and noncoding elements across the A, B, and D subgenomes. With an estimated coverage of 94% of the genome and containing 107,891 high-confidence gene models, this assembly enabled the discovery of tissue- and developmental stage-related coexpression networks by providing a transcriptome atlas representing major stages of wheat development. Dynamics of complex gene families involved in environmental adaptation and end-use quality were revealed at subgenome resolution and contextualized to known agronomic single-gene or quantitative trait loci. This community resource establishes the foundation for accelerating wheat research and application through improved understanding of wheat biology and genomics-assisted breeding.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array

            High-density single nucleotide polymorphism (SNP) genotyping arrays are a powerful tool for studying genomic patterns of diversity, inferring ancestral relationships between individuals in populations and studying marker–trait associations in mapping experiments. We developed a genotyping array including about 90 000 gene-associated SNPs and used it to characterize genetic variation in allohexaploid and allotetraploid wheat populations. The array includes a significant fraction of common genome-wide distributed SNPs that are represented in populations of diverse geographical origin. We used density-based spatial clustering algorithms to enable high-throughput genotype calling in complex data sets obtained for polyploid wheat. We show that these model-free clustering algorithms provide accurate genotype calling in the presence of multiple clusters including clusters with low signal intensity resulting from significant sequence divergence at the target SNP site or gene deletions. Assays that detect low-intensity clusters can provide insight into the distribution of presence–absence variation (PAV) in wheat populations. A total of 46 977 SNPs from the wheat 90K array were genetically mapped using a combination of eight mapping populations. The developed array and cluster identification algorithms provide an opportunity to infer detailed haplotype structure in polyploid wheat and will serve as an invaluable resource for diversity studies and investigating the genetic basis of trait variation in wheat.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              THE ESTIMATION OF MAP DISTANCES FROM RECOMBINATION VALUES

                Bookmark

                Author and article information

                Contributors
                Journal
                Theoretical and Applied Genetics
                Theor Appl Genet
                Springer Science and Business Media LLC
                0040-5752
                1432-2242
                August 2020
                May 20 2020
                August 2020
                : 133
                : 8
                : 2363-2375
                Article
                10.1007/s00122-020-03604-1
                32436020
                1a848047-6caa-4d52-bf03-a5d4ff826755
                © 2020

                https://www.springer.com/tdm

                https://www.springer.com/tdm

                History

                Comments

                Comment on this article