19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Marine (Taeniura lymma) and freshwater (Himantura signifer) elasmobranchs synthesize urea for osmotic water retention.

      Physiological and biochemical zoology : PBZ
      Acclimatization, physiology, Ammonia, metabolism, Ammonium Chloride, administration & dosage, pharmacology, Analysis of Variance, Animals, Fresh Water, Muscle, Skeletal, Seawater, Singapore, Skates (Fish), Urea, Water-Electrolyte Balance, drug effects

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The objective of this study was to elucidate whether the marine blue-spotted fantail ray, Taeniura lymma, and the freshwater white-edge whip ray, Himantura signifer, injected with NH(4)Cl intraperitoneally would excrete the majority of the excess ammonia as ammonia per se to ameliorate ammonia toxicity despite being ureogenic. To examine the roles of urea and the ornithine-urea cycle, experimental fishes were exposed to salinity changes after being injected with NH(4)Cl. The ammonia excretion rates of the marine ray, T. lymma, injected with NH(4)Cl followed by exposure to seawater (30 per thousand) or diluted seawater (25 per thousand) increased 13-fold and 10-fold, respectively, within the first 3 h. Consequently, the respective percentage of nitrogenous wastes excreted as ammonia were 55% and 65% compared with 21% of the saline-injected control, indicating that T. lymma became apparently ammonotelic after injection with NH(4)Cl. By hour 6, large portions (70%-85%) of the ammonia injected into T. lymma exposed to seawater or diluted seawater had been excreted, and T. lymma excreted much more nitrogenous wastes (135%-180%), in excess of the ammonia injected into the fish, during the 24-h period. For T. lymma exposed to seawater, a small portion (30%) of the ammonia injected into the fish was detoxified to urea during the first 6 h, but there was an apparent suppression of urea synthesis thereafter, contributing partially to the large decrease (19%) in urea contents in its muscle at hour 24. A major contributing factor to the decrease in urea content was a reduction in ammonia production, as indicated by a large deficit between urea loss in the muscle and excess ammonia accumulated plus excess nitrogen excreted in the experimental fish. The freshwater ray, H. signifer, injected with NH(4)Cl followed by exposure to freshwater (0.7 per thousand) or brackish water (10 per thousand) was capable of excreting all the ammonia injected into the body, mainly as ammonia, within 12 h. Like T. lymma, it also excreted the injected ammonia mainly as ammonia during the first 3 h postinjection. During this period, the percentage of the injected ammonia excreted in fish exposed to brackish water (28.4%+/-4.6%) was significantly lower than those exposed to freshwater (56.1%+/-8.26%). In contrast, the percentage of nitrogenous wastes being excreted as urea in the former (38.4%) was significantly greater than that in the latter (14.1%). These results suggest that a portion of the ammonia injected into the fish was turned into urea, and urea synthesis was increased transiently in fish exposed to brackish water during the initial postinjection period. However, urea was not retained effectively by H. signifer. Taken together, these results suggest that the primary function of the ornithine-urea cycle in ureogenic marine and freshwater elasmobranchs is to synthesize urea for osmotic water retention and not for ammonia detoxification.

          Related collections

          Author and article information

          Comments

          Comment on this article