0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      RNA G-Quadruplex within the 5′-UTR of FEN1 Regulates mRNA Stability under Oxidative Stress

      , , , , , , ,
      Antioxidants
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Reactive oxygen species (ROS) are a group of highly oxidative molecules that induce DNA damage, affecting DNA damage response (DDR) and gene expression. It is now recognized that DNA base excision repair (BER) is one of the important pathways responsible for sensing oxidative stress to eliminate DNA damage, in which FEN1 plays an important role in this process. However, the regulation of FEN1 under oxidative stress is still unclear. Here, we identified a novel RNA G-quadruplex (rG4) sequence in the 5′untranslated region (5′UTR) of FEN1 mRNA. Under oxidative stress, the G bases in the G4-forming sequence can be oxidized by ROS, resulting in structural disruption of the G-quadruplex. ROS or TMPyP4, a G4-structural ligand, disrupted the formation of G4 structure and affected the expression of FEN1. Furthermore, pull-down experiments identified a novel FEN1 rG4-binding protein, heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), and cellular studies have shown that hnRNPA1 plays an important role in regulating FEN1 expression. This work demonstrates that rG4 acts as a ROS sensor in the 5′UTR of FEN1 mRNA. Taken together, these results suggest a novel role for rG4 in translational control under oxidative stress.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Base-excision repair of oxidative DNA damage.

          Maintaining the chemical integrity of DNA in the face of assault by oxidizing agents is a constant challenge for living organisms. Base-excision repair has an important role in preventing mutations associated with a common product of oxidative damage to DNA, 8-oxoguanine. Recent structural studies have shown that 8-oxoguanine DNA glycosylases use an intricate series of steps to locate and excise 8-oxoguanine lesions efficiently against a high background of undamaged bases. The importance of preventing mutations associated with 8-oxoguanine is shown by a direct association between defects in the DNA glycosylase MUTYH and colorectal cancer. The properties of other guanine oxidation products and the associated DNA glycosylases that remove them are now also being revealed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            G-quadruplex structures: in vivo evidence and function.

            Although many biochemical and structural studies have demonstrated that DNA sequences containing runs of adjacent guanines spontaneously fold into G-quadruplex DNA structures in vitro, only recently has evidence started to accumulate for their presence and function in vivo. Genome-wide analyses have revealed that functional genomic regions from highly divergent organisms are enriched in DNA sequences with G-quadruplex-forming potential, suggesting that G-quadruplexes could provide a nucleic-acid-based mechanism for regulating telomere maintenance, as well as transcription, replication and translation. Here, we review recent studies aimed at uncovering the in vivo presence and function of G-quadruplexes in genomes and RNA, with a particular focus on telomeric G-quadruplexes and how their formation and resolution is regulated to permit telomere synthesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High-throughput sequencing of DNA G-quadruplex structures in the human genome.

              G-quadruplexes (G4s) are nucleic acid secondary structures that form within guanine-rich DNA or RNA sequences. G4 formation can affect chromatin architecture and gene regulation and has been associated with genomic instability, genetic diseases and cancer progression. Here we present a high-resolution sequencing-based method to detect G4s in the human genome. We identified 716,310 distinct G4 structures, 451,646 of which were not predicted by computational methods. These included previously uncharacterized noncanonical long loop and bulged structures. We observed a high G4 density in functional regions, such as 5' untranslated regions and splicing sites, as well as in genes previously not predicted to contain these structures (such as BRCA2). G4 formation was significantly associated with oncogenes, tumor suppressors and somatic copy number alterations related to cancer development. The G4s identified in this study may therefore represent promising targets for cancer intervention.
                Bookmark

                Author and article information

                Contributors
                Journal
                ANTIGE
                Antioxidants
                Antioxidants
                MDPI AG
                2076-3921
                February 2023
                January 26 2023
                : 12
                : 2
                : 276
                Article
                10.3390/antiox12020276
                1af416a3-8e5c-444a-b906-6918c2976d5c
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article