15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      In utero exposure to butyl benzyl phthalate induces modifications in the morphology and the gene expression profile of the mammary gland: an experimental study in rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Environmental estrogens are exogenous estrogen-mimicking compounds that can interfere with endogenous endocrine systems. Several of these endocrine disruptors have been shown to alter normal development and influence tumorigenesis in experimental models. N-butyl benzyl phthalate (BBP), a widely used plasticizer, is a well-known endocrine disruptor. The aim of this study was to elucidate the effect of prenatal exposure to BBP on the morphology, proliferative index, and genomic signature of the rat mammary gland at different ages.

          Methods

          In utero exposure was performed by gavage of pregnant Sprague Dawley CD rats with 120mg or 500mg BBP/kg/day from day 10 post-conception to delivery. Female litters were euthanized at 21, 35, 50 and 100 days. The morphology and proliferative index of the mammary gland were studied from whole mount preparations and BrdU incorporation, respectively. Gene expression profile was assessed by microarrays. Several genes found differentially expressed and related to different functional categories were further validated by real time RT-PCR.

          Results

          Prenatal exposure of BBP induced delayed vaginal opening and changes in the post-natal mammary gland long after the end of the treatment, mainly by 35 days of age. Exposure to the high dose resulted in modifications in architecture and proliferative index of the mammary gland, mostly affecting the undifferentiated terminal end buds. Moreover, the expression profiles of this gland in the exposed rats were modified in a dose-dependent fashion. Analysis of functional categories showed that modified genes were related to immune function, cell signaling, proliferation and differentiation, or metabolism.

          Conclusions

          Our data suggest that in utero exposure to BBP induced a delayed pubertal onset and modified morphology of the mammary gland. These alterations were accompanied by modifications in gene expression previously associated with an increased susceptibility to carcinogenesis.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Urinary levels of seven phthalate metabolites in the U.S. population from the National Health and Nutrition Examination Survey (NHANES) 1999-2000.

          We measured the urinary monoester metabolites of seven commonly used phthalates in approximately 2,540 samples collected from participants of the National Health and Nutrition Examination Survey (NHANES), 1999-2000, who were greater than or equal to 6 years of age. We found detectable levels of metabolites monoethyl phthalate (MEP), monobutyl phthalate (MBP), monobenzyl phthalate (MBzP), and mono-(2-ethylhexyl) phthalate (MEHP) in > 75% of the samples, suggesting widespread exposure in the United States to diethyl phthalate, dibutyl phthalate or diisobutylphthalate, benzylbutyl phthalate, and di-(2-ethylhexyl) phthalate, respectively. We infrequently detected monoisononyl phthalate, mono-cyclohexyl phthalate, and mono-n-octyl phthalate, suggesting that human exposures to di-isononyl phthalate, dioctylphthalate, and dicyclohexyl phthalate, respectively, are lower than those listed above, or the pathways, routes of exposure, or pharmacokinetic factors such as absorption, distribution, metabolism, and elimination are different. Non-Hispanic blacks had significantly higher concentrations of MEP than did Mexican Americans and non-Hispanic whites. Compared with adolescents and adults, children had significantly higher levels of MBP, MBzP, and MEHP but had significantly lower concentrations of MEP. Females had significantly higher concentrations of MEP and MBzP than did males, but similar MEHP levels. Of particular interest, females of all ages had significantly higher concentrations of the reproductive toxicant MBP than did males of all ages; however, women of reproductive age (i.e., 20-39 years of age) had concentrations similar to adolescent girls and women 40 years of age. These population data on exposure to phthalates will serve an important role in public health by helping to set research priorities and by establishing a nationally representative baseline of exposure with which population levels can be compared.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Association between Asthma and Allergic Symptoms in Children and Phthalates in House Dust: A Nested Case–Control Study

            Global phthalate ester production has increased from very low levels at the end of World War II to approximately 3.5 million metric tons/year. The aim of the present study was to investigate potential associations between persistent allergic symptoms in children, which have increased markedly in developed countries over the past three decades, and the concentration of phthalates in dust collected from their homes. This investigation is a case–control study nested within a cohort of 10,852 children. From the cohort, we selected 198 cases with persistent allergic symptoms and 202 controls without allergic symptoms. A clinical and a technical team investigated each child and her or his environment. We found higher median concentrations of butyl benzyl phthalate (BBzP) in dust among cases than among controls (0.15 vs. 0.12 mg/g dust). Analyzing the case group by symptoms showed that BBzP was associated with rhinitis (p = 0.001) and eczema (p = 0.001), whereas di(2-ethylhexyl) phthalate (DEHP) was associated with asthma (p = 0.022). Furthermore, dose–response relationships for these associations are supported by trend analyses. This study shows that phthalates, within the range of what is normally found in indoor environments, are associated with allergic symptoms in children. We believe that the different associations of symptoms for the three major phthalates—BBzP, DEHP, and di-n-butyl phthalate—can be explained by a combination of chemical physical properties and toxicologic potential. Given the phthalate exposures of children worldwide, the results from this study of Swedish children have global implications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms of phthalate ester toxicity in the female reproductive system.

              Phthalates are high-production-volume synthetic chemicals with ubiquitous human exposures because of their use in plastics and other common consumer products. Recent epidemiologic evidence suggests that women have a unique exposure profile to phthalates, which raises concern about the potential health hazards posed by such exposures. Research in our laboratory examines how phthalates interact with the female reproductive system in animal models to provide insights into the potential health effects of these chemicals in women. Here we review our work and the work of others studying these mechanisms and propose a model for the ovarian action of di-(2-ethylhexyl) phthalate (DEHP). In vivo, DEHP (2 g/kg) causes decreased serum estradiol levels, prolonged estrous cycles, and no ovulations in adult, cycling rats. In vitro, monoethylhexyl phthalate (MEHP; the active metabolite of DEHP) decreases granulosa cell aromatase RNA message and protein levels in a dose-dependent manner. MEHP is unique among the phthalates in its suppression of aromatase and in its ability to activate peroxisome proliferator-activated receptors (PPARs). We hypothesize that MEHP activates the PPARs to suppress aromatase in the granulosa cell. MEHP-, PPAR alpha-, and PPAR gamma-specific ligands all similarly decreased estradiol production and RNA message levels of aromatase in vitro. Our model shows that MEHP acts on the granulosa cell by decreasing cAMP stimulated by follicle stimulating hormone and by activating the PPARs, which leads to decreased aromatase transcription. Thus, the environmental contaminant DEHP, through its metabolite MEHP, acts through a receptor-mediated signaling pathway to suppress estradiol production in the ovary, leading to anovulation.
                Bookmark

                Author and article information

                Journal
                Environ Health
                Environmental Health
                BioMed Central
                1476-069X
                2011
                17 January 2011
                : 10
                : 5
                Affiliations
                [1 ]Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
                [2 ]Department of Cell Biology, Physiology and Immunology, Medicine School, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
                [3 ]Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
                Article
                1476-069X-10-5
                10.1186/1476-069X-10-5
                3033239
                21241498
                1b65ee7d-4f15-477d-87d6-f7b51e9a6b25
                Copyright ©2011 Moral et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 28 May 2010
                : 17 January 2011
                Categories
                Research

                Public health
                Public health

                Comments

                Comment on this article