7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neural processing of poems and songs is based on melodic properties

      , , ,
      NeuroImage
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d8438708e101">The neural processing of speech and music is still a matter of debate. A long tradition that assumes shared processing capacities for the two domains contrasts with views that assume domain-specific processing. We here contribute to this topic by investigating, in a functional magnetic imaging (fMRI) study, ecologically valid stimuli that are identical in wording and differ only in that one group is typically spoken (or silently read), whereas the other is sung: poems and their respective musical settings. We focus on the melodic properties of spoken poems and their sung musical counterparts by looking at proportions of significant autocorrelations (PSA) based on pitch values extracted from their recordings. Following earlier studies, we assumed a bias of poem-processing towards the left and a bias for song-processing on the right hemisphere. Furthermore, PSA values of poems and songs were expected to explain variance in left- vs. right-temporal brain areas, while continuous liking ratings obtained in the scanner should modulate activity in the reward network. Overall, poem processing compared to song processing relied on left temporal regions, including the superior temporal gyrus, whereas song processing compared to poem processing recruited more right temporal areas, including Heschl's gyrus and the superior temporal gyrus. PSA values co-varied with activation in bilateral temporal regions for poems, and in right-dominant fronto-temporal regions for songs. Continuous liking ratings were correlated with activity in the default mode network for both poems and songs. The pattern of results suggests that the neural processing of poems and their musical settings is based on their melodic properties, supported by bilateral temporal auditory areas and an additional right fronto-temporal network known to be implicated in the processing of melodies in songs. These findings take a middle ground in providing evidence for specific processing circuits for speech and music in the left and right hemisphere, but simultaneously for shared processing of melodic aspects of both poems and their musical settings in the right temporal cortex. Thus, we demonstrate the neurobiological plausibility of assuming the importance of melodic properties in spoken and sung aesthetic language alike, along with the involvement of the default mode network in the aesthetic appreciation of these properties. </p>

          Related collections

          Most cited references115

          • Record: found
          • Abstract: not found
          • Article: not found

          The assessment and analysis of handedness: The Edinburgh inventory

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.

            An anatomical parcellation of the spatially normalized single-subject high-resolution T1 volume provided by the Montreal Neurological Institute (MNI) (D. L. Collins et al., 1998, Trans. Med. Imag. 17, 463-468) was performed. The MNI single-subject main sulci were first delineated and further used as landmarks for the 3D definition of 45 anatomical volumes of interest (AVOI) in each hemisphere. This procedure was performed using a dedicated software which allowed a 3D following of the sulci course on the edited brain. Regions of interest were then drawn manually with the same software every 2 mm on the axial slices of the high-resolution MNI single subject. The 90 AVOI were reconstructed and assigned a label. Using this parcellation method, three procedures to perform the automated anatomical labeling of functional studies are proposed: (1) labeling of an extremum defined by a set of coordinates, (2) percentage of voxels belonging to each of the AVOI intersected by a sphere centered by a set of coordinates, and (3) percentage of voxels belonging to each of the AVOI intersected by an activated cluster. An interface with the Statistical Parametric Mapping package (SPM, J. Ashburner and K. J. Friston, 1999, Hum. Brain Mapp. 7, 254-266) is provided as a freeware to researchers of the neuroimaging community. We believe that this tool is an improvement for the macroscopical labeling of activated area compared to labeling assessed using the Talairach atlas brain in which deformations are well known. However, this tool does not alleviate the need for more sophisticated labeling strategies based on anatomical or cytoarchitectonic probabilistic maps.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              FSL.

              FSL (the FMRIB Software Library) is a comprehensive library of analysis tools for functional, structural and diffusion MRI brain imaging data, written mainly by members of the Analysis Group, FMRIB, Oxford. For this NeuroImage special issue on "20 years of fMRI" we have been asked to write about the history, developments and current status of FSL. We also include some descriptions of parts of FSL that are not well covered in the existing literature. We hope that some of this content might be of interest to users of FSL, and also maybe to new research groups considering creating, releasing and supporting new software packages for brain image analysis. Copyright © 2011 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                NeuroImage
                NeuroImage
                Elsevier BV
                10538119
                August 2022
                August 2022
                : 257
                : 119310
                Article
                10.1016/j.neuroimage.2022.119310
                35569784
                1c33b505-c9fb-4152-9ff6-2d744db5dbcc
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article