24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A model for the Escherichia coli FtsB/FtsL/FtsQ cell division complex

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Bacterial division is produced by the formation of a macromolecular complex in the middle of the cell, called the divisome, formed by more than 10 proteins. This process can be divided into two steps, in which the first is the polymerization of FtsZ to form the Z ring in the cytoplasm, and then the sequential addition of FtsA/ZipA to anchor the ring at the cytoplasmic membrane, a stage completed by FtsEX and FtsK. In the second step, the formation of the peptidoglycan synthesis machinery in the periplasm takes place, followed by cell division. The proteins involved in connecting both steps in cell division are FtsQ, FtsB and FtsL, and their interaction is a crucial and conserved event in the division of different bacteria. These components are small bitopic membrane proteins, and their specific function seems to be mainly structural. The purpose of this study was to obtain a structural model of the periplasmic part of the FtsB/FtsL/FtsQ complex, using bioinformatics tools and experimental data reported in the literature.

          Results

          Two oligomeric models for the periplasmic region of the FtsB/FtsL/FtsQ E. coli complex were obtained from bioinformatics analysis. The FtsB/FtsL subcomplex was modelled as a coiled-coil based on sequence information and several stoichiometric possibilities. The crystallographic structure of FtsQ was added to this complex, through protein-protein docking. Two final structurally-stable models, one trimeric and one hexameric, were obtained. The nature of the protein-protein contacts was energetically favourable in both models and the overall structures were in agreement with the experimental evidence reported.

          Conclusions

          The two models obtained for the FtsB/FtsL/FtsQ complex were stable and thus compatible with the in vivo periplasmic complex structure. Although the hexameric model 2:2:2 has features that indicate that this is the most plausible structure, the ternary complex 1:1:1 cannot be discarded. Both models could be further stabilized by the binding of the other proteins of the divisome. The bioinformatics modelling of this kind of protein complex, whose function is mainly structural, provide useful information. Experimental results should confirm or reject these models and provide new data for future bioinformatics studies to refine the models.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          The PSIPRED protein structure prediction server.

          The PSIPRED protein structure prediction server allows users to submit a protein sequence, perform a prediction of their choice and receive the results of the prediction both textually via e-mail and graphically via the web. The user may select one of three prediction methods to apply to their sequence: PSIPRED, a highly accurate secondary structure prediction method; MEMSAT 2, a new version of a widely used transmembrane topology prediction method; or GenTHREADER, a sequence profile based fold recognition method. Freely available to non-commercial users at http://globin.bio.warwick.ac.uk/psipred/
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            H++: a server for estimating pKas and adding missing hydrogens to macromolecules

            The structure and function of macromolecules depend critically on the ionization (protonation) states of their acidic and basic groups. A number of existing practical methods predict protonation equilibrium pK constants of macromolecules based upon their atomic resolution Protein Data Bank (PDB) structures; the calculations are often performed within the framework of the continuum electrostatics model. Unfortunately, these methodologies are complex, involve multiple steps and require considerable investment of effort. Our web server provides access to a tool that automates this process, allowing both experts and novices to quickly obtain estimates of pKs as well as other related characteristics of biomolecules such as isoelectric points, titration curves and energies of protonation microstates. Protons are added to the input structure according to the calculated ionization states of its titratable groups at the user-specified pH; the output is in the PQR (PDB + charges + radii) format. In addition, corresponding coordinate and topology files are generated in the format supported by the molecular modeling package AMBER. The server is intended for a broad community of biochemists, molecular modelers, structural biologists and drug designers; it can also be used as an educational tool in biochemistry courses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Satisfying hydrogen bonding potential in proteins.

              We have analysed the frequency with which potential hydrogen bond donors and acceptors are satisfied in protein molecules. There are a small percentage of nitrogen or oxygen atoms that do not form hydrogen bonds with either solvent or protein atoms, when standard criteria are used. For high resolution structures 9.5% and 5.1% of buried main-chain nitrogen and oxygen atoms, respectively, fail to hydrogen bond under our standard criteria, representing 5.8% and 2.1% of all main-chain nitrogen and oxygen atoms. We find that as the resolution of the data improves, the percentages fall. If the hydrogen bond criteria are relaxed many of these unsatisfied atoms form weak hydrogen bonds. However, there remain some buried atoms (1.3% NH and 1.8% CO) that fail to hydrogen bond without any immediately obvious compensating interactions.
                Bookmark

                Author and article information

                Journal
                BMC Struct Biol
                BMC Structural Biology
                BioMed Central
                1472-6807
                2011
                14 June 2011
                : 11
                : 28
                Affiliations
                [1 ]Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile. Chile
                [2 ]Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso. Chile
                Article
                1472-6807-11-28
                10.1186/1472-6807-11-28
                3152878
                21672257
                1c7f502c-d7c6-4953-a408-21b787ab35bc
                Copyright ©2011 Villanelo et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 28 January 2011
                : 14 June 2011
                Categories
                Research Article

                Molecular biology
                Molecular biology

                Comments

                Comment on this article