57
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Time of injury affects urinary biomarker predictive values for acute kidney injury in critically ill, non-septic patients

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The predictive value of acute kidney injury (AKI) urinary biomarkers may depend on the time interval following tubular injury, thereby explaining in part the heterogeneous performance of these markers that has been reported in the literature. We studied the influence of timing on the predictive values of tubular proteins, measured before the rise of serum creatinine (SCr) in critically ill, non-septic patients.

          Methods

          Seven hundred adult critically ill patients were prospectively included for urine measurements at four time-points prior to the rise in serum creatinine (T = 0, -16, -20 and -24 h). Patients with sepsis and or AKI at ICU entry were excluded. The urinary excretion of the proteins, neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1), which are up-regulated in the distal and proximal tubules, respectively, were measured as well as the constitutive cytoplasmatic enzymes, π- and α-glutathione-S-transferase (GST), which are released by the distal and proximal tubules, respectively.

          Results

          Five hundred and forty-three subjects were eligible for further analyses; however, 49 developed AKI in the first 48 h. Both NGAL (P = 0.001 at T = -24 vs. non-AKI patients) and KIM-1 (P < 0.0001 at T = 0 vs. non-AKI patients) concentrations gradually increased until AKI diagnosis, whereas π- and α-GST peaked at T = -24 before AKI (P = 0.006 and P = 0.002, respectively vs. non-AKI patients) and showed a rapid decline afterwards. The predictive values at T = -24 prior to AKI were modest for π- and α-GST, whereas NGAL sufficiently predicted AKI at T = -24 and its predictive power improved as the time interval to AKI presentation decreased (area under the receiver operating characteristic curve; AUC = 0.79, P < 0.0001). KIM-1 was a good discriminator at T = 0 only (AUC = 0.73, P < 0.0001).

          Conclusions

          NGAL, KIM-1, pi- and alpha-GST displayed unique and mutually incomparable time dependent characteristics during the development of non-sepsis related AKI. Therefore, the time-relationship between the biomarker measurements and the injurious event influences the individual test results.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury

          Introduction Acute kidney injury (AKI) can evolve quickly and clinical measures of function often fail to detect AKI at a time when interventions are likely to provide benefit. Identifying early markers of kidney damage has been difficult due to the complex nature of human AKI, in which multiple etiologies exist. The objective of this study was to identify and validate novel biomarkers of AKI. Methods We performed two multicenter observational studies in critically ill patients at risk for AKI - discovery and validation. The top two markers from discovery were validated in a second study (Sapphire) and compared to a number of previously described biomarkers. In the discovery phase, we enrolled 522 adults in three distinct cohorts including patients with sepsis, shock, major surgery, and trauma and examined over 300 markers. In the Sapphire validation study, we enrolled 744 adult subjects with critical illness and without evidence of AKI at enrollment; the final analysis cohort was a heterogeneous sample of 728 critically ill patients. The primary endpoint was moderate to severe AKI (KDIGO stage 2 to 3) within 12 hours of sample collection. Results Moderate to severe AKI occurred in 14% of Sapphire subjects. The two top biomarkers from discovery were validated. Urine insulin-like growth factor-binding protein 7 (IGFBP7) and tissue inhibitor of metalloproteinases-2 (TIMP-2), both inducers of G1 cell cycle arrest, a key mechanism implicated in AKI, together demonstrated an AUC of 0.80 (0.76 and 0.79 alone). Urine [TIMP-2]·[IGFBP7] was significantly superior to all previously described markers of AKI (P 0.72. Furthermore, [TIMP-2]·[IGFBP7] significantly improved risk stratification when added to a nine-variable clinical model when analyzed using Cox proportional hazards model, generalized estimating equation, integrated discrimination improvement or net reclassification improvement. Finally, in sensitivity analyses [TIMP-2]·[IGFBP7] remained significant and superior to all other markers regardless of changes in reference creatinine method. Conclusions Two novel markers for AKI have been identified and validated in independent multicenter cohorts. Both markers are superior to existing markers, provide additional information over clinical variables and add mechanistic insight into AKI. Trial registration ClinicalTrials.gov number NCT01209169.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies.

            The aim of this study was to test the hypothesis that, without diagnostic changes in serum creatinine, increased neutrophil gelatinase-associated lipocalin (NGAL) levels identify patients with subclinical acute kidney injury (AKI) and therefore worse prognosis. Neutrophil gelatinase-associated lipocalin detects subclinical AKI hours to days before increases in serum creatinine indicate manifest loss of renal function. We analyzed pooled data from 2,322 critically ill patients with predominantly cardiorenal syndrome from 10 prospective observational studies of NGAL. We used the terms NGAL(-) or NGAL(+) according to study-specific NGAL cutoff for optimal AKI prediction and the terms sCREA(-) or sCREA(+) according to consensus diagnostic increases in serum creatinine defining AKI. A priori-defined outcomes included need for renal replacement therapy (primary endpoint), hospital mortality, their combination, and duration of stay in intensive care and in-hospital. Of study patients, 1,296 (55.8%) were NGAL(-)/sCREA(-), 445 (19.2%) were NGAL(+)/sCREA(-), 107 (4.6%) were NGAL(-)/sCREA(+), and 474 (20.4%) were NGAL(+)/sCREA(+). According to the 4 study groups, there was a stepwise increase in subsequent renal replacement therapy initiation-NGAL(-)/sCREA(-): 0.0015% versus NGAL(+)/sCREA(-): 2.5% (odds ratio: 16.4, 95% confidence interval: 3.6 to 76.9, p < 0.001), NGAL(-)/sCREA(+): 7.5%, and NGAL(+)/sCREA(+): 8.0%, respectively, hospital mortality (4.8%, 12.4%, 8.4%, 14.7%, respectively) and their combination (4-group comparisons: all p < 0.001). There was a similar and consistent progressive increase in median number of intensive care and in-hospital days with increasing biomarker positivity: NGAL(-)/sCREA(-): 4.2 and 8.8 days; NGAL(+)/sCREA(-): 7.1 and 17.0 days; NGAL(-)/sCREA(+): 6.5 and 17.8 days; NGAL(+)/sCREA(+): 9.0 and 21.9 days; 4-group comparisons: p = 0.003 and p = 0.040, respectively. Urine and plasma NGAL indicated a similar outcome pattern. In the absence of diagnostic increases in serum creatinine, NGAL detects patients with likely subclinical AKI who have an increased risk of adverse outcomes. The concept and definition of AKI might need re-assessment. Copyright © 2011 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biomarkers for the diagnosis and risk stratification of acute kidney injury: a systematic review.

              The diagnosis of acute kidney injury (AKI) is usually based on changes in serum creatinine, but such measurements are a poor marker of acute deterioration in kidney function. We performed a systematic review of publications that evaluated the accuracy and reliability of serum and urinary biomarkers in human subjects when used for the diagnosis of established AKI or early AKI, or to risk stratify patients with AKI. Two reviewers independently searched the MEDLINE and EMBASE databases (January 2000-March 2007) for studies pertaining to biomarkers for AKI. Studies were assessed for methodologic quality. In total, 31 studies evaluated 21 unique serum and urine biomarkers. Twenty-five of the 31 studies were scored as having 'good' quality. The results of the studies indicated that serum cystatin C, urine interleukin-18 (IL-18), and urine kidney injury molecule-1 (KIM-1) performed best for the differential diagnosis of established AKI. Serum cystatin C and urine neutrophil gelatinase-associated lipocalin, IL-18, glutathione-S-transferase-pi, and gamma-glutathione-S-transferase performed best for early diagnosis of AKI. Urine N-acetyl-beta-D-glucosaminidase, KIM-1, and IL-18 performed the best for mortality risk prediction after AKI. In conclusion, published data from studies of serum and urinary biomarkers suggest that biomarkers may have great potential to advance the fields of nephrology and critical care. These biomarkers need validation in larger studies, and the generalizability of biomarkers to different types of AKI as well as the incremental prognostic value over traditional clinical variables needs to be determined.
                Bookmark

                Author and article information

                Contributors
                Journal
                BMC Nephrol
                BMC Nephrol
                BMC Nephrology
                BioMed Central
                1471-2369
                2013
                9 December 2013
                : 14
                : 273
                Affiliations
                [1 ]Department of Intensive Care, Erasmus University Medical Center, Rotterdam, the Netherlands
                [2 ]Department of Nephrology, Erasmus University Medical Center, Rotterdam, the Netherlands
                [3 ]Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, the Netherlands
                [4 ]Department of Intensive Care Medicine, Erasmus University Medical Center, H619 PO box 2040, Rotterdam, CA 3000, The Netherlands
                Article
                1471-2369-14-273
                10.1186/1471-2369-14-273
                3878913
                24321290
                1c8aed44-3245-4dd6-8b26-d5af86c4e17a
                Copyright © 2013 de Geus et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 June 2013
                : 6 November 2013
                Categories
                Research Article

                Nephrology
                aki,pi-gst and alpha gst,urinary biomarkers,ngal,kim-1
                Nephrology
                aki, pi-gst and alpha gst, urinary biomarkers, ngal, kim-1

                Comments

                Comment on this article