29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hyperglycemia exacerbates colon cancer malignancy through hexosamine biosynthetic pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hyperglycemia is a common feature of diabetes mellitus, considered as a risk factor for cancer. However, its direct effects in cancer cell behavior are relatively unexplored. Herein we show that high glucose concentration induces aberrant glycosylation, increased cell proliferation, invasion and tumor progression of colon cancer. By modulating the activity of the rate-limiting enzyme, glutamine-fructose-6-phosphate amidotransferase (GFAT), we demonstrate that hexosamine biosynthetic pathway (HBP) is involved in those processes. Biopsies from patients with colon carcinoma show increased levels of GFAT and consequently aberrant glycans’ expression suggesting an increase of HBP flow in human colon cancer. All together, our results open the possibility that HBP links hyperglycemia, aberrant glycosylation and tumor malignancy, and suggest this pathway as a potential therapeutic target for colorectal cancer.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found

          Galectins as modulators of tumour progression.

          Galectins are a family of animal lectins with diverse biological activities. They function both extracellularly, by interacting with cell-surface and extracellular matrix glycoproteins and glycolipids, and intracellularly, by interacting with cytoplasmic and nuclear proteins to modulate signalling pathways. Current research indicates that galectins have important roles in cancer; they contribute to neoplastic transformation, tumour cell survival, angiogenesis and tumour metastasis. They can modulate the immune and inflammatory responses and might have a key role helping tumours to escape immune surveillance. How do the different members of the Galectin family contribute to these diverse aspects of tumour biology?
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation.

            The number of N-glycans (n) is a distinct feature of each glycoprotein sequence and cooperates with the physical properties of the Golgi N-glycan-branching pathway to regulate surface glycoprotein levels. The Golgi pathway is ultrasensitive to hexosamine flux for the production of tri- and tetra-antennary N-glycans, which bind to galectins and form a molecular lattice that opposes glycoprotein endocytosis. Glycoproteins with few N-glycans (e.g., TbetaR, CTLA-4, and GLUT4) exhibit enhanced cell-surface expression with switch-like responses to increasing hexosamine concentration, whereas glycoproteins with high numbers of N-glycans (e.g., EGFR, IGFR, FGFR, and PDGFR) exhibit hyperbolic responses. Computational and experimental data reveal that these features allow nutrient flux stimulated by growth-promoting high-n receptors to drive arrest/differentiation programs by increasing surface levels of low-n glycoproteins. We have identified a mechanism for metabolic regulation of cellular transition between growth and arrest in mammals arising from apparent coevolution of N-glycan number and branching.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance.

              Based on our previous finding that desensitization of the insulin-responsive glucose transport system (GTS) requires three components, glucose, insulin, and glutamine, we postulated that the routing of incoming glucose through the hexosamine biosynthesis pathway plays a key role in the development of insulin resistance in primary cultured adipocytes. Two approaches were used to test this hypothesis. First, we assessed whether glucose-induced desensitization of the GTS could be prevented by glutamine analogs that irreversibly inactivate glutamine-requiring enzymes, such as glutamine:fructose-6-phosphate amidotransferase (GFAT) the first and the rate-limiting enzyme in hexosamine biosynthesis. Both O-diazoacetyl-L-serine (azaserine) and 6-diazo-5-oxonorleucine inhibited desensitization in 18-h treated cells without affecting maximal insulin responsiveness in control cells. Moreover, close agreement was seen between the ability of azaserine to prevent desensitization of the GTS in intact adipocytes (70% inhibition, ED50 = 1.1 microM), its ability to inactivate GFAT in intact adipocytes (64% inhibition, ED50 = 1.0 microM) and its ability to inactivate GFAT activity in a cytosolic adipocyte preparation (ED50 = 1.3 microM). From these results we concluded that a glutamine amidotransferase is involved in the induction of insulin resistance. As a second approach, we determined whether glucosamine, an agent known to preferentially enter the hexosamine pathway at a point distal to enzymatic amidation by GFAT, could induce cellular insulin resistance. When adipocytes were exposed to various concentrations of glucosamine for 5 h, progressive desensitization of the GTS was observed (ED50 = 0.36 mM) that culminated in a 40-50% loss of insulin responsiveness. Moreover, we estimated that glucosamine is at least 40 times more potent than glucose in mediating desensitization, since glucosamine entered adipocytes at only one-quarter of the glucose uptake rate, yet induced desensitization at an extra-cellular dose 10 times lower than glucose. In addition, we found that glucosamine-induced desensitization did not require glutamine and was unaffected by azaserine treatment. Thus, we conclude that glucosamine enters the hexosamine-desensitization pathway at a point distal to GFAT amidation. Overall, these studies indicate that a unique metabolic pathway exists in adipocytes that mediates desensitization of the insulin-responsive GTS, and reveal that an early step in this pathway involves the conversion of fructose 6-phosphate to glucosamine 6-phosphate by the first and rate-limiting enzyme of the hexosamine pathway, glutamine:fructose-6-phosphate amidotransferase.
                Bookmark

                Author and article information

                Journal
                Oncogenesis
                Oncogenesis
                Oncogenesis
                Nature Publishing Group
                2157-9024
                March 2017
                20 March 2017
                1 March 2017
                : 6
                : 3
                : e306
                Affiliations
                [1 ]Instituto de Biofísica Carlos Chagas Filho , Rio de Janeiro, Brazil
                [2 ]Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Brazil
                [3 ]Programa de Biologia Celular, Instituto Nacional de Câncer (INCA) , Rio de Janeiro, Brazil
                Author notes
                [* ]Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Bloco D sala 03 CCS, UFRJ, Ilha do Fundao , Rio de Janeiro 21941-902, Brazil. E-mail: adrianet@ 123456biof.ufrj.br
                Article
                oncsis20172
                10.1038/oncsis.2017.2
                5533945
                28319096
                1ca3bf5f-ddba-44a6-adb0-ef9a8ffa8e89
                Copyright © 2017 The Author(s)

                Oncogenesis is an open-access journal published by Nature Publishing Group. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 11 July 2016
                : 07 November 2016
                : 14 December 2016
                Categories
                Original Article

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article