Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Establishing a Mouse Model of Chlorpromazine-Induced Corneal Trigeminal Denervation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          This study aimed to establish a mouse model of chlorpromazine-induced corneal trigeminal denervation (CCTD).

          Methods

          Retrobulbar chlorpromazine injections were administered to 6- to 8-week-old C57BL/6j mice to induce corneal denervation. Additionally, apoptosis was assessed in isolated primary trigeminal ganglion cells after culturing in a conditioned medium containing chlorpromazine. Finally, the success rate of model generation, mortality and complication rates, and model-preparation learning curves were compared between the CCTD model and the electrocoagulation and axotomy models.

          Results

          Chlorpromazine retrobulbar injections resulted in trigeminal denervation, leading to a reduced blink reflex, corneal nerve density, and corneal epithelium thickness. Furthermore, 90% (9/10) of the mice developed epithelial defects, accompanied by increased apoptosis and inhibited proliferation of corneal epithelial cells. In vitro, trigeminal ganglion cell apoptosis increased after culturing in a conditioned medium containing chlorpromazine. Moreover, the CCTD model exhibited a higher success rate, longer survival rate, and lower complication rate compared to the electrocoagulation and axotomy models. Crucially, the learning curve demonstrated that the method used to generate the CCTD model was easy to learn.

          Conclusions

          The CCTD model is a user-friendly mouse model for studying corneal trigeminal denervation that offers a less invasive alternative to existing models.

          Translational Relevance

          The CCTD model serves as a valuable tool for investigating the functional mechanisms of corneal trigeminal nerves and their interactions with corneal cells.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Corneal nerves in health and disease.

          Corneal nerves are responsible for the sensations of touch, pain, and temperature and play an important role in the blink reflex, wound healing, and tear production and secretion. Corneal nerve dysfunction is a frequent feature of diseases that cause opacities and result in corneal blindness. Corneal opacities rank as the second most frequent cause of blindness. Technological advances in in vivo corneal nerve imaging, such as optical coherence tomography and confocal scanning, have generated new knowledge regarding the phenomenological events that occur during reinnervation of the cornea following disease, injury, or surgery. The recent availability of transgenic neurofluorescent murine models has stimulated the search for molecular modulators of corneal nerve regeneration. New evidence suggests that neuroregenerative and inflammatory pathways in the cornea are intertwined. Evidence-based treatment of neurotrophic corneal diseases includes using neuroregenerative (blood component-based and neurotrophic factors), neuroprotective, and ensconcing (bandage contact lens and amniotic membrane) strategies and avoiding anti-inflammatory therapies, such as cyclosporine and corticosteroids. Copyright © 2014 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neurotrophic keratopathy

            Neurotrophic Keratopathy (NK) refers to a condition where corneal epitheliopathy leading to frank epithelial defect with or without stromal ulceration (melting) is associated with reduced or absent corneal sensations. Sensory nerves serve nociceptor and trophic functions, which can be affected independently or simultaneously. Loss of trophic function and consequent epithelial breakdown exposes the stroma making it susceptible to enzymatic degradation. Nerve pathology can range from attrition to aberrant re-generation with corresponding symptoms from anaesthesia to hyperaesthesia/allodynia. Many systemic and ocular conditions, including surgery and preserved medications can lead to NK. NK can be mild (epithelium and tear film changes), moderate (non-healing epithelial defect) or severe (stromal melting and perforation). Moderate and severe NK can profoundly affect vision and adversely impact on the quality of life. Medical management with lubricating agents from artificial tears to serum/plasma drops, anti-inflammatory agents, antibiotics and anti-proteases all provide non-specific relief, which may be temporary. Contact lenses, punctal plugs, lid closure with botulinum toxin and surgical interventions like tarsorrhaphy, conjunctival flaps and amniotic membrane provide greater success but often at the cost of obscuring sight. Corneal surgery in a dry ocular surface with reduced sensation is at high risk of failure. The recent advent of biologicals such as biopolymers mimicking heparan sulfate; coenzyme Q10 and antisense oligonucleotide that suppress connexin 43 expression, all offer promise. Recombinant nerve growth factor (cenegermin), recently approved for human use targets the nerve pathology and has the potential of addressing the underlying deficit and becoming a specific therapy for NK.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The antipsychotic agent chlorpromazine induces autophagic cell death by inhibiting the Akt/mTOR pathway in human U-87MG glioma cells.

              2-Chloro-10-[3(-dimethylamino)propyl]phenothiazine mono hydrochloride (chlorpromazine; CPZ) is an antipsychotic agent that was originally developed to control psychotic disorders. The cytotoxic properties of the CPZ are well known, but its mechanism of action is poorly understood. In this study, we investigated the role of apoptosis and autophagy in CPZ-induced cytotoxicity in U-87MG glioma cells. CPZ treatment inhibited cell proliferation and long-term clonogenic survival. Additionally, CPZ triggered autophagy, as indicated by electron microscopy and accumulation of the membrane form of microtubule-associated protein 1 light chain 3 (LC3-II); however, CPZ did not induce apoptosis. Inhibition of autophagy by expression of Beclin 1 small interfering RNA (siRNA) in U-87MG cells attenuated CPZ-induced LC3-II formation. Furthermore, U-87MG cells expressing Beclin 1 siRNA attenuated CPZ-induced cell death. CPZ inhibited phosphatidylinositol 3-kinase (PI3K)/AKT/ mTOR pathway in U-87MG cells. Treatment with LY294002, a PI3K inhibitor, alone increased the accumulation of LC3-II and potentiated the effect of CPZ. In contrast, exogenous expression of AKT partially inhibited CPZ-induced LC3-II formation. When U-87MG cells were implanted into the brain of athymic nude mouse, CPZ triggered autophagy and inhibited xenograft tumor growth. These results provided the first evidence that CPZ-induced cytotoxicity is mediated through autophagic cell death in PTEN (phosphatase and tensin homolog deleted on chromosome 10)-null U-87MG glioma cells by inhibiting PI3K/AKT/mTOR pathway.
                Bookmark

                Author and article information

                Journal
                Transl Vis Sci Technol
                Transl Vis Sci Technol
                TVST
                Translational Vision Science & Technology
                The Association for Research in Vision and Ophthalmology
                2164-2591
                31 October 2023
                October 2023
                : 12
                : 10
                : 21
                Affiliations
                [1 ]The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
                Author notes
                [# ] Correspondence: Shuangyong Wang, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong Province, China. e-mail: tiannuo1979@ 123456163.com
                [*]

                XL and PX contributed equally to this work.

                Article
                TVST-23-5607
                10.1167/tvst.12.10.21
                10619696
                37906054
                1cd79ffd-751c-4494-8180-55c2c32d2c34
                Copyright 2023 The Authors

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

                History
                : 24 September 2023
                : 15 March 2023
                Page count
                Pages: 12
                Categories
                Cornea & External Disease
                Cornea & External Disease

                chlorpromazine,cornea,trigeminal denervation
                chlorpromazine, cornea, trigeminal denervation

                Comments

                Comment on this article