20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Bioactive Glasses-Structure and Properties

      Angewandte Chemie International Edition
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references149

          • Record: found
          • Abstract: not found
          • Article: not found

          THE ATOMIC ARRANGEMENT IN GLASS

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The story of Bioglass.

            Historically the function of biomaterials has been to replace diseased or damaged tissues. First generation biomaterials were selected to be as bio-inert as possible and thereby minimize formation of scar tissue at the interface with host tissues. Bioactive glasses were discovered in 1969 and provided for the first time an alternative; second generation, interfacial bonding of an implant with host tissues. Tissue regeneration and repair using the gene activation properties of Bioglass provide a third generation of biomaterials. This article reviews the 40 year history of the development of bioactive glasses, with emphasis on the first composition, 45S5 Bioglass, that has been in clinical use since 1985. The steps of discovery, characterization, in vivo and in vitro evaluation, clinical studies and product development are summarized along with the technology transfer processes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W.

              High-strength bioactive glass-ceramic A-W was soaked in various acellular aqueous solutions different in ion concentrations and pH. After soaking for 7 and 30 days, surface structural changes of the glass-ceramic were investigated by means of Fourier transform infrared reflection spectroscopy, thin-film x-ray diffraction, and scanning electronmicroscopic observations, in comparison with in vivo surface structural changes. So-called Tris buffer solution, pure water buffered with trishydroxymethyl-aminomethane, which had been used by various workers as a "simulated body fluid," did not reproduce the in vivo surface structural changes, i.e., apatite formation on the surface. A solution, ion concentrations and pH of which are almost equal to those of the human blood plasma--i.e., Na+ 142.0, K+ 5.0, Mg2+ 1.5, Ca2+ 2.5, Cl- 148.8, HCO3- 4.2 and PO4(2-) 1.0 mM and buffered at pH 7.25 with the trishydroxymethyl-aminomethane--most precisely reproduced in vivo surface structure change. This shows that careful selection of simulated body fluid is required for in vitro experiments. The results also support the concept that the apatite phase on the surface of glass-ceramic A-W is formed by a chemical reaction of the glass-ceramic with the Ca2+, HPO4(2-), and OH- ions in the body fluid.
                Bookmark

                Author and article information

                Journal
                Angewandte Chemie International Edition
                Angew. Chem. Int. Ed.
                Wiley-Blackwell
                14337851
                March 27 2015
                March 27 2015
                : 54
                : 14
                : 4160-4181
                Article
                10.1002/anie.201405310
                25765017
                1cdcc655-5723-4db5-a8b2-20779bba5e41
                © 2015

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article