22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sodium Valproate Inhibits Small Cell Lung Cancer Tumor Growth on the Chicken Embryo Chorioallantoic Membrane and Reduces the p53 and EZH2 Expression

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The study aims to test the effect of different sodium valproate (NaVP) doses on small cell lung cancer NCI-H146 cells tumor in chicken embryo chorioallantoic membrane (CAM) model. Xenografts were investigated in the following groups: nontreated control and 5 groups treated with different NaVP doses (2, 3, 4, 6, and 8 mmol/L). Invasion of tumors into CAM in the nontreated group reached 76%. Tumors treated with 8 mmol/L NaVP doses significantly differed in tumor invasion frequency from the control and those treated with 2 mmol/L ( P < .01). The calculated probability of 50% tumor noninvasion into CAM was when tumors were treated with 4 mmol/L of NaVP. Number of p53-positive cells in tumors was significantly reduced when treated with NaVP doses from 3 to 8 mmol/L as compared with control; number of EZH2-positive cells in control significantly differed from all NaVP-treated groups. No differences in p53- and EZH2-positive cell numbers were found among 4, 6, and 8 mmol/L NaVP-treated groups. Invaded tumors had an increased N-cadherin and reduced E-cadherin expression. The results indicate the increasing NaVP dose to be able to inhibit tumors progression. Expression of p53 and EZH2 may be promising target markers of therapeutic efficacy evaluation.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Targeting EZH2 in cancer.

          Recent genomic studies have resulted in an emerging understanding of the role of chromatin regulators in the development of cancer. EZH2, a histone methyl transferase subunit of a Polycomb repressor complex, is recurrently mutated in several forms of cancer and is highly expressed in numerous others. Notably, both gain-of-function and loss-of-function mutations occur in cancers but are associated with distinct cancer types. Here we review the spectrum of EZH2-associated mutations, discuss the mechanisms underlying EZH2 function, and synthesize a unifying perspective that the promotion of cancer arises from disruption of the role of EZH2 as a master regulator of transcription. We further discuss EZH2 inhibitors that are now showing early signs of promise in clinical trials and also additional strategies to combat roles of EZH2 in cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Small-cell lung cancer.

            The incidence and mortality of small-cell lung cancer worldwide make this disease a notable health-care issue. Diagnosis relies on histology, with the use of immunohistochemical studies to confirm difficult cases. Typical patients are men older than 70 years who are current or past heavy smokers and who have pulmonary and cardiovascular comorbidities. Patients often present with rapid-onset symptoms due to local intrathoracic tumour growth, extrapulmonary distant spread, paraneoplastic syndromes, or a combination of these features. Staging aims ultimately to define disease as metastatic or non-metastatic. Combination chemotherapy, generally platinum-based plus etoposide or irinotecan, is the mainstay first-line treatment for metastatic small-cell lung cancer. For non-metastatic disease, evidence supports early concurrent thoracic radiotherapy. Prophylactic cranial irradiation should be considered for patients with or without metastases whose disease does not progress after induction chemotherapy and radiotherapy. Despite high initial response rates, most patients eventually relapse. Except for topotecan, few treatment options then remain. Signalling pathways have been identified that might yield new drug targets. Copyright © 2011 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Small cell lung cancer: where do we go from here?

              Small cell lung cancer (SCLC) is an aggressive disease that accounts for approximately 14% of all lung cancers. In the United States, approximately 31,000 patients are diagnosed annually with SCLC. Despite numerous clinical trials, including at least 40 phase 3 trials since the 1970s, systemic treatment for patients with SCLC has not changed significantly in the past several decades. Consequently, the 5-year survival rate remains low at <7% overall, and most patients survive for only 1 year or less after diagnosis. Unlike nonsmall cell lung cancer (NSCLC), in which major advances have been made using targeted therapies, there are still no approved targeted drugs for SCLC. Significant barriers to progress in SCLC include 1) a lack of early detection modalities, 2) limited tumor tissue for translational research (eg, molecular profiling of DNA, RNA, and/or protein alterations) because of small diagnostic biopsies and the rare use of surgical resection in standard treatment, and 3) rapid disease progression with poor understanding of the mechanisms contributing to therapeutic resistance. In this report, the authors review the current state of SCLC treatment, recent advances in current understanding of the underlying disease biology, and opportunities to advance translational research and therapeutic approaches for patients with SCLC.
                Bookmark

                Author and article information

                Journal
                Dose Response
                Dose Response
                DOS
                spdos
                Dose-Response
                SAGE Publications (Sage CA: Los Angeles, CA )
                1559-3258
                26 April 2018
                Apr-Jun 2018
                : 16
                : 2
                : 1559325818772486
                Affiliations
                [1 ]Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
                [2 ]Laboratory of Molecular Oncology, National Cancer Institute, Vilnius, Lithuania
                Author notes
                [*]Lina Šlekienė, Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Mickevičiaus Str.9, LT-44307 Kaunas, Lithuania. Email: lina.slekiene@ 123456lsmuni.lt
                Article
                10.1177_1559325818772486
                10.1177/1559325818772486
                5944146
                29760602
                1d0cf65a-c720-4f9f-a31f-006a6e6070e0
                © The Author(s) 2018

                This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License ( http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                : 14 February 2018
                : 26 March 2018
                : 27 March 2018
                Funding
                Funded by: Reasearch fund of Lithuanian University of Health Sciences;
                Award ID: V-1238
                Categories
                Original Article
                Custom metadata
                April-June 2018

                small cell lung cancer,nci-h146,sodium valproate,chicken embryo chorioallantoic membrane,p53,ezh2

                Comments

                Comment on this article