2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Functional approaches to the study of G-protein-coupled receptors in postmortem brain tissue: [35S]GTPγS binding assays combined with immunoprecipitation

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references99

          • Record: found
          • Abstract: found
          • Article: not found

          Trends in GPCR drug discovery: new agents, targets and indications

          G protein-coupled receptors (GPCRs) are the most intensively studied drug targets, largely due to their substantial involvement in human pathophysiology and their pharmacological tractability. Here, we report the first analysis of all GPCR drugs and agents in clinical trials. This reveals the current trends across molecule types, drug targets and therapeutic indications, including showing that 481 drugs (~34% of all drugs approved by the FDA) act at 107 unique GPCR targets. Approximately 320 agents are currently in clinical trials, of which ~36% target 64 potentially novel GPCR targets without an approved drug, and the number of biological drugs, allosteric modulators and biased agonists has grown. The major disease indications for GPCR modulators show a shift towards diabetes, obesity, and Alzheimer’s disease, while other central nervous system disorders remain highly represented. The 227 (57%) non-olfactory GPCRs that are yet to be explored in clinical trials have broad untapped therapeutic potential, particularly in genetic and immune system disorders. Finally, we provide an interactive online resource to analyse and infer trends in GPCR drug discovery.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Heterotrimeric G protein activation by G-protein-coupled receptors.

            Heterotrimeric G proteins have a crucial role as molecular switches in signal transduction pathways mediated by G-protein-coupled receptors. Extracellular stimuli activate these receptors, which then catalyse GTP-GDP exchange on the G protein alpha-subunit. The complex series of interactions and conformational changes that connect agonist binding to G protein activation raise various interesting questions about the structure, biomechanics, kinetics and specificity of signal transduction across the plasma membrane.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Anatomical profiling of G protein-coupled receptor expression.

              G protein-coupled receptors (GPCRs) comprise the largest family of transmembrane signaling molecules and regulate a host of physiological and disease processes. To better understand the functions of GPCRs in vivo, we quantified transcript levels of 353 nonodorant GPCRs in 41 adult mouse tissues. Cluster analysis placed many GPCRs into anticipated anatomical and functional groups and predicted previously unidentified roles for less-studied receptors. From one such prediction, we showed that the Gpr91 ligand succinate can regulate lipolysis in white adipose tissue, suggesting that signaling by this citric acid cycle intermediate may regulate energy homeostasis. We also showed that pairwise analysis of GPCR expression across tissues may help predict drug side effects. This resource will aid studies to understand GPCR function in vivo and may assist in the identification of therapeutic targets.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Pharmacological Reports
                Pharmacol. Rep
                Springer Science and Business Media LLC
                1734-1140
                2299-5684
                August 2021
                April 20 2021
                August 2021
                : 73
                : 4
                : 1079-1095
                Article
                10.1007/s43440-021-00253-z
                1d582357-d34c-4b2f-8969-fb49f6271e89
                © 2021

                https://www.springer.com/tdm

                https://www.springer.com/tdm

                History

                Comments

                Comment on this article