77
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Doppler Optical Coherence Tomography

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Optical Coherence Tomography (OCT) has revolutionized ophthalmology. Since its introduction in the early 1990s it has continuously improved in terms of speed, resolution and sensitivity. The technique has also seen a variety of extensions aiming to assess functional aspects of the tissue in addition to morphology. One of these approaches is Doppler OCT (DOCT), which aims to visualize and quantify blood flow. Such extensions were already implemented in time domain systems, but have gained importance with the introduction of Fourier domain OCT. Nowadays phase-sensitive detection techniques are most widely used to extract blood velocity and blood flow from tissues. A common problem with the technique is that the Doppler angle is not known and several approaches have been realized to obtain absolute velocity and flow data from the retina. Additional studies are required to elucidate which of these techniques is most promising. In the recent years, however, several groups have shown that data can be obtained with high validity and reproducibility. In addition, several groups have published values for total retinal blood flow. Another promising application relates to non-invasive angiography. As compared to standard techniques such as fluorescein and indocyanine-green angiography the technique offers two major advantages: no dye is required and depth resolution is required is provided. As such Doppler OCT has the potential to improve our abilities to diagnose and monitor ocular vascular diseases.

          Related collections

          Most cited references116

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of retinal blood flow in health and disease.

          Optimal retinal neuronal cell function requires an appropriate, tightly regulated environment, provided by cellular barriers, which separate functional compartments, maintain their homeostasis, and control metabolic substrate transport. Correctly regulated hemodynamics and delivery of oxygen and metabolic substrates, as well as intact blood-retinal barriers are necessary requirements for the maintenance of retinal structure and function. Retinal blood flow is autoregulated by the interaction of myogenic and metabolic mechanisms through the release of vasoactive substances by the vascular endothelium and retinal tissue surrounding the arteriolar wall. Autoregulation is achieved by adaptation of the vascular tone of the resistance vessels (arterioles, capillaries) to changes in the perfusion pressure or metabolic needs of the tissue. This adaptation occurs through the interaction of multiple mechanisms affecting the arteriolar smooth muscle cells and capillary pericytes. Mechanical stretch and increases in arteriolar transmural pressure induce the endothelial cells to release contracting factors affecting the tone of arteriolar smooth muscle cells and pericytes. Close interaction between nitric oxide (NO), lactate, arachidonic acid metabolites, released by the neuronal and glial cells during neural activity and energy-generating reactions of the retina strive to optimize blood flow according to the metabolic needs of the tissue. NO, which plays a central role in neurovascular coupling, may exert its effect, by modulating glial cell function involved in such vasomotor responses. During the evolution of ischemic microangiopathies, impairment of structure and function of the retinal neural tissue and endothelium affect the interaction of these metabolic pathways, leading to a disturbed blood flow regulation. The resulting ischemia, tissue hypoxia and alterations in the blood barrier trigger the formation of macular edema and neovascularization. Hypoxia-related VEGF expression correlates with the formation of neovessels. The relief from hypoxia results in arteriolar constriction, decreases the hydrostatic pressure in the capillaries and venules, and relieves endothelial stretching. The reestablished oxygenation of the inner retina downregulates VEGF expression and thus inhibits neovascularization and macular edema. Correct control of the multiple pathways, such as retinal blood flow, tissue oxygenation and metabolic substrate support, aiming at restoring retinal cell metabolic interactions, may be effective in preventing damage occurring during the evolution of ischemic microangiopathies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Speckle variance detection of microvasculature using swept-source optical coherence tomography.

            We report on imaging of microcirculation by calculating the speckle variance of optical coherence tomography (OCT) structural images acquired using a Fourier domain mode-locked swept-wavelength laser. The algorithm calculates interframe speckle variance in two-dimensional and three-dimensional OCT data sets and shows little dependence to the Doppler angle ranging from 75 degrees to 90 degrees . We demonstrate in vivo detection of blood flow in vessels as small as 25 microm in diameter in a dorsal skinfold window chamber model with direct comparison with intravital fluorescence confocal microscopy. This technique can visualize vessel-size-dependent vascular shutdown and transient vascular occlusion during Visudyne photodynamic therapy and may provide opportunities for studying therapeutic effects of antivascular treatments without on exogenous contrast agent.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Optical coherence angiography.

              Noninvasive angiography is demonstrated for the in vivo human eye. Three-dimensional flow imaging has been performed with high-speed spectral-domain optical coherence tomography. Sample motion is compensated by two algorithms. Axial motion between adjacent A-lines within one OCT image is compensated by the Doppler shift due to bulk sample motion. Axial displacements between neighboring images are compensated by a correlation-based algorithm. Three-dimensional vasculature of ocular vessels has been visualized. By integrating volume sets of flow images, two-dimensional images of blood vessels are obtained. Retinal and choroidal blood vessel images are simultaneously obtained by separating the volume set into retinal part and choroidal parts. These are corresponding to fluorescein angiogram and indocyanine angiogram.
                Bookmark

                Author and article information

                Contributors
                Journal
                Prog Retin Eye Res
                Prog Retin Eye Res
                Progress in Retinal and Eye Research
                Pergamon
                1350-9462
                1873-1635
                1 July 2014
                July 2014
                : 41
                : 100
                : 26-43
                Affiliations
                [a ]Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
                [b ]Department of Clinical Pharmacology, Medical University Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
                Author notes
                []Corresponding author. Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria. Tel.: +43 1 40400 1984. leopold.schmetterer@ 123456meduniwien.ac.at
                [1]

                Percentage of work contributed by each author in the production of the manuscript is as follows: Leitgeb: 30%; Werkmeister: 15%; Blatter: 15%; Schmetterer: 40%.

                Article
                S1350-9462(14)00017-2
                10.1016/j.preteyeres.2014.03.004
                4073226
                24704352
                1d94a7fe-1c28-4471-b0cc-edeb2346bc81
                © 2014 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

                History
                Categories
                Article

                Vision sciences
                optical coherence tomography,retinal vasculature,doppler effect,blood flow,angiography,perfusion

                Comments

                Comment on this article