0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inhibition of spleen tyrosine kinase decreases donor specific antibody levels in a rat model of sensitization

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Antibody mediated rejection is a major cause of renal allograft loss. Circulating preformed donor specific antibodies (DSA) can result as a consequence of blood transfusion, pregnancy or prior transplantation. Current treatment strategies are limited due to partial or transient efficacy, adverse side-effects or patient unsuitability. Previous in vivo studies exploring autoimmune diseases have shown that spleen tyrosine kinase (SYK) signalling is involved in the development of pathogenic autoantibody. The role of SYK in allogenic antibody production is unknown, and we investigated this in a rodent model of sensitization, established by the transfusion of F344 whole blood into LEW rats. Two-week treatment of sensitized rats with selective SYK inhibitor fostamatinib strongly blocked circulating DSA production without affecting overall total immunoglobulin levels, and inhibition was sustained up to 5 weeks post-completion of the treatment regimen. Fostamatinib treatment did not affect mature B cell subset or plasma cell levels, which remained similar between non-treated controls, vehicle treated and fostamatinib treated animals. Our data indicate fostamatinib may provide an alternative therapeutic option for patients who are at risk of sensitization following blood transfusion while awaiting renal transplant.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          The SYK tyrosine kinase: a crucial player in diverse biological functions.

          Spleen tyrosine kinase (SYK) is known to have a crucial role in adaptive immune receptor signalling. However, recent reports indicate that SYK also mediates other, unexpectedly diverse biological functions, including cellular adhesion, innate immune recognition, osteoclast maturation, platelet activation and vascular development. SYK is activated by C-type lectins and integrins, and activates new targets, including the CARD9-BCL-10-MALT1 pathway and the NLRP3 inflammasome. Studies using Drosophila melanogaster suggest that there is an evolutionarily ancient origin of SYK-mediated signalling. Moreover, SYK has a crucial role in autoimmune diseases and haematological malignancies. This Review summarizes our current understanding of the diverse functions of SYK and how this is being translated for therapeutic purposes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Perinatal lethality and blocked B-cell development in mice lacking the tyrosine kinase Syk.

            The tyrosine kinase Syk (relative molecular mass 72,000), which is widely expressed in haematopoietic cells, becomes associated with and activated by engagement of the B-cell antigen receptor. Furthermore, it has been implicated in signalling through the receptors for interleukin-2 (IL-2), granulocyte colony-stimulating factor (G-CSF) and Fc, the T cell receptor, as well as through receptors for several platelet agonists. A homologous kinase, ZAP-70, is crucial in signalling through the T-cell receptor and in T-cell development. Using homologous recombination in embryonic stem cells, we created mice null for the syk gene which showed petechiae in utero and died shortly after birth. Irradiated mice reconstituted with Syk-deficient fetal liver showed a block in B-cell development at the pro-B to pre-B cell transition, consistent with a key role for Syk in pre-B-cell receptor signalling. Despite the production of small numbers of immature B cells, Syk-deficient radiation chimaeras failed to accumulate mature B cells, indicating a possible role for this protein in the production or maintenance of mature B cells. In addition, whereas the development of alpha beta T cells proceeded normally, Syk-deficient mice showed impaired development of thymocytes using the V gamma 3 variable region gene (V gamma 3+ thymocytes). Finally, we show that Syk is not required for signalling through the IL-2 and G-CSF receptors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              R406, an orally available spleen tyrosine kinase inhibitor blocks fc receptor signaling and reduces immune complex-mediated inflammation.

              Recent compelling evidence has lead to renewed interest in the role of antibodies and immune complexes in the pathogenesis of several autoimmune disorders, such as rheumatoid arthritis. These immune complexes, consisting of autoantibodies to self-antigens, can mediate inflammatory responses largely through binding and activating the immunoglobulin Fc receptors (FcRs). Using cell-based structure activity relationships with cultured human mast cells, we have identified the small molecule R406 [N4-(2,2-dimethyl-3-oxo-4H-pyrid[1,4]oxazin-6-yl)-5-fluoro-N2-(3,4,5-trimethoxyphenyl)-2,4-pyrimidinediamine] as a potent inhibitor of immunoglobulin E (IgE)- and IgG-mediated activation of Fc receptor signaling (EC(50) for degranulation = 56-64 nM). Here we show that the primary target for R406 is the spleen tyrosine kinase (Syk), which plays a key role in the signaling of activating Fc receptors and the B-cell receptor (BCR). R406 inhibited phosphorylation of Syk substrate linker for activation of T cells in mast cells and B-cell linker protein/SLP65 in B cells. R406 bound to the ATP binding pocket of Syk and inhibited its kinase activity as an ATP-competitive inhibitor (K(i) = 30 nM). Furthermore, R406 blocked Syk-dependent FcR-mediated activation of monocytes/macrophages and neutrophils and BCR-mediated activation of B lymphocytes. R406 was selective as assessed using a large panel of Syk-independent cell-based assays representing both specific and general signaling pathways. Consistent with Syk inhibition, oral administration of R406 to mice reduced immune complex-mediated inflammation in a reverse-passive Arthus reaction and two antibody-induced arthritis models. Finally, we report a first-inhuman study showing that R406 is orally bioavailable, achieving exposures capable of inhibiting Syk-dependent IgE-mediated basophil activation. Collectively, the results show R406 potential for modulating Syk activity in human disease.
                Bookmark

                Author and article information

                Contributors
                s.tempest-roe12@imperial.ac.uk
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                28 February 2022
                28 February 2022
                2022
                : 12
                : 3330
                Affiliations
                [1 ]GRID grid.7445.2, ISNI 0000 0001 2113 8111, Department of Immunology & Inflammation, Centre for Inflammatory Disease, , Imperial College London, ; London, UK
                [2 ]GRID grid.417895.6, ISNI 0000 0001 0693 2181, Imperial College Healthcare NHS Trust, ; London, UK
                [3 ]GRID grid.443956.9, Rigel Pharmaceuticals Incorporated, ; South San Francisco, CA USA
                Author information
                http://orcid.org/0000-0001-9043-8337
                Article
                6413
                10.1038/s41598-022-06413-2
                8885754
                35228550
                1db3a52d-a5c9-4547-a86d-f156eea4a09e
                © The Author(s) 2022

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 19 June 2021
                : 17 November 2021
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100000291, Kidney Research UK;
                Award ID: Making Every Kidney Count
                Funded by: Imperial College Charity Fund (Ken and Mary Minton Fund)
                Categories
                Article
                Custom metadata
                © The Author(s) 2022

                Uncategorized
                allotransplantation,humoral immunity
                Uncategorized
                allotransplantation, humoral immunity

                Comments

                Comment on this article