15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      NADPH oxidase as a therapeutic target in Alzheimer's disease

      review-article
      1 ,
      BMC Neuroscience
      BioMed Central
      8th International Conference on Alzheimer's Disease Drug Discovery
      15–16 October 2007

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          At present, available treatments for Alzheimer's disease (AD) are largely unable to halt disease progression. Microglia, the resident macrophages in the brain, are strongly implicated in the pathology and progressively degenerative nature of AD. Specifically, microglia are activated in response to both β amyloid (Aβ) and neuronal damage, and can become a chronic source of neurotoxic cytokines and reactive oxygen species (ROS). NADPH oxidase is a multi-subunit enzyme complex responsible for the production of both extracellular and intracellular ROS by microglia. Importantly, NADPH oxidase expression is upregulated in AD and is an essential component of microglia-mediated Aβ neurotoxicity. Activation of microglial NADPH oxidase causes neurotoxicity through two mechanisms: 1) extracellular ROS produced by microglia are directly toxic to neurons; 2) intracellular ROS function as a signaling mechanism in microglia to amplify the production of several pro-inflammatory and neurotoxic cytokines (for example, tumor necrosis factor-α, prostaglandin E2, and interleukin-1β). The following review describes how targeting NADPH oxidase can reduce a broad spectrum of toxic factors (for example, cytokines, ROS, and reactive nitrogen species) to result in inhibition of neuronal damage from two triggers of deleterious microglial activation (Aβ and neuron damage), offering hope in halting the progression of AD.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: found
          • Article: not found

          Inflammation and Alzheimer's disease.

          Inflammation clearly occurs in pathologically vulnerable regions of the Alzheimer's disease (AD) brain, and it does so with the full complexity of local peripheral inflammatory responses. In the periphery, degenerating tissue and the deposition of highly insoluble abnormal materials are classical stimulants of inflammation. Likewise, in the AD brain damaged neurons and neurites and highly insoluble amyloid beta peptide deposits and neurofibrillary tangles provide obvious stimuli for inflammation. Because these stimuli are discrete, microlocalized, and present from early preclinical to terminal stages of AD, local upregulation of complement, cytokines, acute phase reactants, and other inflammatory mediators is also discrete, microlocalized, and chronic. Cumulated over many years, direct and bystander damage from AD inflammatory mechanisms is likely to significantly exacerbate the very pathogenic processes that gave rise to it. Thus, animal models and clinical studies, although still in their infancy, strongly suggest that AD inflammation significantly contributes to AD pathogenesis. By better understanding AD inflammatory and immunoregulatory processes, it should be possible to develop anti-inflammatory approaches that may not cure AD but will likely help slow the progression or delay the onset of this devastating disorder.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism.

            Inflammation, a common denominator among the diverse list of neurodegenerative diseases, has recently been implicated as a critical mechanism responsible for the progressive nature of neurodegeneration. Microglia are the resident innate immune cells in the central nervous system and produce a barrage of factors (IL-1, TNFalpha, NO, PGE2, superoxide) that are toxic to neurons. Evidence supports that the unregulated activation of microglia in response to environmental toxins, endogenous proteins, and neuronal death results in the production of toxic factors that propagate neuronal injury. In the following review, we discuss the common thread of microglial activation across numerous neurodegenerative diseases, define current perceptions of how microglia are damaging neurons, and explain how the microglial response to neuronal damage results in a self-propelling cycle of neuron death.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Alzheimer disease in the US population: prevalence estimates using the 2000 census.

              Current and future estimates of Alzheimer disease (AD) are essential for public health planning. To provide prevalence estimates of AD for the US population from 2000 through 2050. Alzheimer disease incidence estimates from a population-based, biracial, urban study, using a stratified random sampling design, were converted to prevalence estimates and applied to US Census Bureau estimates of US population growth. A geographically defined community of 3 adjacent neighborhoods in Chicago, Ill, applied to the US population. Alzheimer disease incidence was measured in 3838 persons free of AD at baseline; 835 persons were evaluated for disease incidence. Main Outcome Measure Current and future estimates of prevalence of clinically diagnosed AD in the US population. In 2000, there were 4.5 million persons with AD in the US population. By 2050, this number will increase by almost 3-fold, to 13.2 million. Owing to the rapid growth of the oldest age groups of the US population, the number who are 85 years and older will more than quadruple to 8.0 million. The number who are 75 to 84 years old will double to 4.8 million, while the number who are 65 to 74 years old will remain fairly constant at 0.3 to 0.5 million. The number of persons with AD in the US population will continue to increase unless new discoveries facilitate prevention of the disease.
                Bookmark

                Author and article information

                Conference
                BMC Neurosci
                BMC Neuroscience
                BioMed Central
                1471-2202
                2008
                3 December 2008
                : 9
                : Suppl 2
                : S8
                Affiliations
                [1 ]Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Campus, Richmond, VA 23298, USA
                Article
                1471-2202-9-S2-S8
                10.1186/1471-2202-9-S2-S8
                2604892
                19090996
                1ea25e33-d5c4-4f86-9586-3c03e307da00
                Copyright © 2008 Block; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                8th International Conference on Alzheimer's Disease Drug Discovery
                New York, NY, USA
                15–16 October 2007
                History
                Categories
                Review

                Neurosciences
                Neurosciences

                Comments

                Comment on this article