16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Adhesion of human glioma cell lines to fibronectin, laminin, vitronectin and collagen I is modulated by gangliosides in vitro.

      Cell adhesion and communication
      Amino Acid Sequence, Basement Membrane, metabolism, Cell Adhesion, drug effects, physiology, Extracellular Matrix Proteins, chemistry, Gangliosides, pharmacology, Glioma, physiopathology, Humans, Integrins, Molecular Sequence Data, Molecular Weight, Oligopeptides, Peptide Fragments, Tumor Cells, Cultured

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Adhesion of eight cell lines, derived from human gliomas of different histological types, to fibronectin, collagen I, vitronectin, and laminin was investigated in vitro. The glioma cell lines were found to attach to these substrates to different extents. Interestingly, all cell lines strongly attached to laminin. In addition, glioma cell adhesion was found to be dose dependent. Moreover, adhesion of three cell lines to fibronectin and collagen I was partially inhibited and to vitronectin completely prevented by GRGDTP peptide, indicating the involvement of integrin receptors in glioma cell adhesion. We have demonstrated, recently, that gangliosides play an important role in promoting glioma cell invasion of the reconstituted basement membrane, Matrigel, in vitro. In order to study the mechanism of action of gangliosides in this process, the role of six gangliosides (GM1, GM3, GD3, GD1a, GD1b, and GT1b) in cell adhesion to the four proteins was investigated in three cell lines. Although all gangliosides, with the exception of GM3, were found to enhance cell adhesion to these proteins to different extents, GD3 proved to be the most effective adhesion-promoting ganglioside in all three cell lines. GM3 was found to inhibit cell adhesion to the four proteins in one cell line but enhanced cell adhesion in two other cell lines. The three cell lines were found to express both GD3 and gangliosides recognised by the A2B5 antibody. Furthermore, adhesion of the three cell lines to fibronectin, vitronectin, laminin, and collagen I was inhibited by incubation with A2B5, demonstrating the involvement of intrinsic cell membrane gangliosides in adhesion of glioma cells to these proteins. Taken together with the observation that gangliosides modulate integrin receptor function, these data suggest that gangliosides may play a central role in the control of the adhesive and invasive properties of human glioma cells.

          Related collections

          Author and article information

          Comments

          Comment on this article