13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Structures of human ENT1 in complex with adenosine reuptake inhibitors

      research-article
      1 , 1 ,
      Nature structural & molecular biology

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The human Equilibrative Nucleoside Transporter 1 (hENT1), a member of the SLC29 family, plays crucial roles in adenosine signaling, cellular uptake of nucleoside for DNA and RNA synthesis, and nucleoside-derived anticancer and antiviral drug transport in human. Because of its central role in adenosine signaling, it is the target of adenosine reuptake inhibitors (AdoRI), several of which are clinically used. Despite its importance in human physiology and pharmacology, the molecular basis of hENT1-mediated adenosine transport and its inhibition by AdoRIs are limited due to the absence of structural information on hENT1. Here we present crystal structures of hENT1 in complex with two chemically distinct AdoRIs: dilazep and S-(4-Nitrobenzyl)-6-thioinosine (NBMPR). Combined with mutagenesis study, our structural analyses elucidate two distinct inhibitory mechanisms exhibited on hENT1, while giving insight into adenosine recognition and transport. Our studies provide the platform for improved pharmacological intervention of adenosine and nucleoside analog drug transport by hENT1.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Screening and large-scale expression of membrane proteins in mammalian cells for structural studies.

          Structural, biochemical and biophysical studies of eukaryotic membrane proteins are often hampered by difficulties in overexpression of the candidate molecule. Baculovirus transduction of mammalian cells (BacMam), although a powerful method to heterologously express membrane proteins, can be cumbersome for screening and expression of multiple constructs. We therefore developed plasmid Eric Gouaux (pEG) BacMam, a vector optimized for use in screening assays, as well as for efficient production of baculovirus and robust expression of the target protein. In this protocol, we show how to use small-scale transient transfection and fluorescence-detection size-exclusion chromatography (FSEC) experiments using a GFP-His8-tagged candidate protein to screen for monodispersity and expression level. Once promising candidates are identified, we describe how to generate baculovirus, transduce HEK293S GnTI(-) (N-acetylglucosaminyltransferase I-negative) cells in suspension culture and overexpress the candidate protein. We have used these methods to prepare pure samples of chicken acid-sensing ion channel 1a (cASIC1) and Caenorhabditis elegans glutamate-gated chloride channel (GluCl) for X-ray crystallography, demonstrating how to rapidly and efficiently screen hundreds of constructs and accomplish large-scale expression in 4-6 weeks.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Crystal structure of the human glucose transporter GLUT1.

            The glucose transporter GLUT1 catalyses facilitative diffusion of glucose into erythrocytes and is responsible for glucose supply to the brain and other organs. Dysfunctional mutations may lead to GLUT1 deficiency syndrome, whereas overexpression of GLUT1 is a prognostic indicator for cancer. Despite decades of investigation, the structure of GLUT1 remains unknown. Here we report the crystal structure of human GLUT1 at 3.2 Å resolution. The full-length protein, which has a canonical major facilitator superfamily fold, is captured in an inward-open conformation. This structure allows accurate mapping and potential mechanistic interpretation of disease-associated mutations in GLUT1. Structure-based analysis of these mutations provides an insight into the alternating access mechanism of GLUT1 and other members of the sugar porter subfamily. Structural comparison of the uniporter GLUT1 with its bacterial homologue XylE, a proton-coupled xylose symporter, allows examination of the transport mechanisms of both passive facilitators and active transporters.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins.

              Formation of well-ordered crystals of membrane proteins is a bottleneck for structure determination by X-ray crystallography. Nevertheless, one can increase the probability of successful crystallization by precrystallization screening, a process by which one analyzes the monodispersity and stability of the protein-detergent complex. Traditionally, this has required microgram to milligram quantities of purified protein and a concomitant investment of time and resources. Here, we describe a rapid and efficient precrystallization screening strategy in which the target protein is covalently fused to green fluorescent protein (GFP) and the resulting unpurified protein is analyzed by fluorescence-detection size-exclusion chromatography (FSEC). This strategy requires only nanogram quantities of unpurified protein and allows one to evaluate localization and expression level, the degree of monodispersity, and the approximate molecular mass. We show the application of this precrystallization screening to four membrane proteins derived from prokaryotic or eukaryotic organisms.
                Bookmark

                Author and article information

                Journal
                101186374
                31761
                Nat Struct Mol Biol
                Nat. Struct. Mol. Biol.
                Nature structural & molecular biology
                1545-9993
                1545-9985
                9 May 2019
                24 June 2019
                July 2019
                24 December 2019
                : 26
                : 7
                : 599-606
                Affiliations
                [1 ]Department of Biochemistry, Duke University Medical Center, 303 Research Drive, Durham, North Carolina, 27710, USA
                Author notes

                Author Contributions N.J.W. solved the structures and performed all experiments under the guidance of S.-Y.L. N.J.W. and S.-Y.L. wrote the paper.

                []Correspondence to: S.-Y. Lee. seok-yong.lee@ 123456duke.edu , tel: 919-684-1005, fax: 919-684-8885
                Article
                NIHMS1528933
                10.1038/s41594-019-0245-7
                6705415
                31235912
                1faf4ff6-f2c5-4540-8581-5e269fcf271c

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Molecular biology
                Molecular biology

                Comments

                Comment on this article