3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Active bacterial modification of the host environment through RNA polymerase II inhibition

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products.

          We have developed a simple and highly efficient method to disrupt chromosomal genes in Escherichia coli in which PCR primers provide the homology to the targeted gene(s). In this procedure, recombination requires the phage lambda Red recombinase, which is synthesized under the control of an inducible promoter on an easily curable, low copy number plasmid. To demonstrate the utility of this approach, we generated PCR products by using primers with 36- to 50-nt extensions that are homologous to regions adjacent to the gene to be inactivated and template plasmids carrying antibiotic resistance genes that are flanked by FRT (FLP recognition target) sites. By using the respective PCR products, we made 13 different disruptions of chromosomal genes. Mutants of the arcB, cyaA, lacZYA, ompR-envZ, phnR, pstB, pstCA, pstS, pstSCAB-phoU, recA, and torSTRCAD genes or operons were isolated as antibiotic-resistant colonies after the introduction into bacteria carrying a Red expression plasmid of synthetic (PCR-generated) DNA. The resistance genes were then eliminated by using a helper plasmid encoding the FLP recombinase which is also easily curable. This procedure should be widely useful, especially in genome analysis of E. coli and other bacteria because the procedure can be done in wild-type cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A comparison of normalization methods for high density oligonucleotide array data based on variance and bias.

            When running experiments that involve multiple high density oligonucleotide arrays, it is important to remove sources of variation between arrays of non-biological origin. Normalization is a process for reducing this variation. It is common to see non-linear relations between arrays and the standard normalization provided by Affymetrix does not perform well in these situations. We present three methods of performing normalization at the probe intensity level. These methods are called complete data methods because they make use of data from all arrays in an experiment to form the normalizing relation. These algorithms are compared to two methods that make use of a baseline array: a one number scaling based algorithm and a method that uses a non-linear normalizing relation by comparing the variability and bias of an expression measure. Two publicly available datasets are used to carry out the comparisons. The simplest and quickest complete data method is found to perform favorably. Software implementing all three of the complete data normalization methods is available as part of the R package Affy, which is a part of the Bioconductor project http://www.bioconductor.org. Additional figures may be found at http://www.stat.berkeley.edu/~bolstad/normalize/index.html
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Summaries of Affymetrix GeneChip probe level data.

              High density oligonucleotide array technology is widely used in many areas of biomedical research for quantitative and highly parallel measurements of gene expression. Affymetrix GeneChip arrays are the most popular. In this technology each gene is typically represented by a set of 11-20 pairs of probes. In order to obtain expression measures it is necessary to summarize the probe level data. Using two extensive spike-in studies and a dilution study, we developed a set of tools for assessing the effectiveness of expression measures. We found that the performance of the current version of the default expression measure provided by Affymetrix Microarray Suite can be significantly improved by the use of probe level summaries derived from empirically motivated statistical models. In particular, improvements in the ability to detect differentially expressed genes are demonstrated.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Journal of Clinical Investigation
                American Society for Clinical Investigation
                0021-9738
                1558-8238
                February 15 2021
                February 15 2021
                February 15 2021
                February 15 2021
                February 15 2021
                February 15 2021
                : 131
                : 4
                Article
                10.1172/JCI140333
                1fb78a2f-b948-4e24-9f52-4d76a0b78a1f
                © 2021
                History

                Comments

                Comment on this article