58
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access
      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Growing evidence is showing that metastatic cell populations are able to transfer their characteristics to less malignant cells. Exosomes (EXOs) are membrane vesicles of endocytic origin able to convey their cargo of mRNAs, microRNAs (miRs), proteins and lipids from donors to proximal as well as distant acceptor cells. Our previous results indicated that miR-221&222 are key factors for melanoma development and dissemination. The aim of this study was to verify whether the tumorigenic properties associated with miR-222 overexpression can be also propagated by miR-222-containing EXOs.

          Methods

          EXOs were isolated by UltraCentrifugation or Exoquick-TC ® methods. Preparations of melanoma-derived vesicles were characterized by using the Nanosight™ technology and the expression of exosome markers analyzed by western blot. The expression levels of endogenous and exosomal miRNAs were examined by real time PCR. Confocal microscopy was used to evaluate transfer and uptake of microvesicles from donor to recipient cells. The functional significance of exosomal miR-222 was estimated by analyzing the vessel-like process formation, as well as cell cycle rates, invasive and chemotactic capabilities.

          Results

          Besides microvesicle marker characterization, we evidenced that miR-222 exosomal expression mostly reflected its abundance in the cells of origin, correctly paralleled by repression of its target genes, such as p27Kip1, and induction of the PI3K/AKT pathway, thus confirming its functional implication in cancer. The possible differential significance of PI3K/AKT blockade was assessed by using the BKM120 inhibitor in miR-222-transduced cell lines. In addition, in vitro cultures showed that vesicles released by miR-222-overexpressing cells were able to transfer miR-222-dependent malignancy when taken-up by recipient primary melanomas. Results were confirmed by antagomiR-221&222 treatments and by functional observations after internalization of EXOs devoid of these miRs.

          Conclusion

          All together these data, besides generally confirming the role of miR-222 in melanoma tumorigenesis, supported its responsibility in the exosome-associated melanoma properties, thus further indicating this miR as potential diagnostic and prognostic biomarker and its abrogation as a future therapeutic option.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s12967-016-0811-2) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          The microcosmos of cancer.

          The discovery of microRNAs (miRNAs) almost two decades ago established a new paradigm of gene regulation. During the past ten years these tiny non-coding RNAs have been linked to virtually all known physiological and pathological processes, including cancer. In the same way as certain key protein-coding genes, miRNAs can be deregulated in cancer, in which they can function as a group to mark differentiation states or individually as bona fide oncogenes or tumour suppressors. Importantly, miRNA biology can be harnessed experimentally to investigate cancer phenotypes or used therapeutically as a target for drugs or as the drug itself.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MicroRNA control of signal transduction.

            MicroRNAs (miRNAs) are integral elements in the post-transcriptional control of gene expression. After the identification of hundreds of miRNAs, the challenge is now to understand their specific biological function. Signalling pathways are ideal candidates for miRNA-mediated regulation owing to the sharp dose-sensitive nature of their effects. Indeed, emerging evidence suggests that miRNAs affect the responsiveness of cells to signalling molecules such as transforming growth factor-beta, WNT, Notch and epidermal growth factor. As such, miRNAs serve as nodes of signalling networks that ensure homeostasis and regulate cancer, metastasis, fibrosis and stem cell biology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High Levels of Exosomes Expressing CD63 and Caveolin-1 in Plasma of Melanoma Patients

              Background Metastatic melanoma is an untreatable cancer lacking reliable and non-invasive markers of disease progression. Exosomes are small vesicles secreted by normal as well as tumor cells. Human tumor-derived exosomes are involved in malignant progression and we evaluated the presence of exosomes in plasma of melanoma patients as a potential tool for cancer screening and follow-up. Methodology/Principal Findings We designed an in-house sandwich ELISA (Exotest) to capture and quantify exosomes in plasma based on expression of housekeeping proteins (CD63 and Rab-5b) and a tumor-associated marker (caveolin-1). Western blot and flow cytometry analysis of exosomes were used to confirm the Exotest-based findings. The Exotest allowed sensitive detection and quantification of exosomes purified from human tumor cell culture supernatants and plasma from SCID mice engrafted with human melanoma. Plasma levels of exosomes in melanoma-engrafted SCID mice correlated to tumor size. We evaluated the levels of plasma exosomes expressing CD63 and caveolin-1 in melanoma patients (n = 90) and healthy donors (n = 58). Consistently, plasma exosomes expressing CD63 (504±315) or caveolin-1 (619±310) were significantly increased in melanoma patients as compared to healthy donors (223±125 and 228±102, respectively). While the Exotest for CD63+ plasma exosomes had limited sensitivity (43%) the Exotest for detection of caveolin-1+ plasma exosomes showed a higher sensitivity (68%). Moreover, caveolin-1+ plasma exosomes were significantly increased with respect to CD63+ exosomes in the patients group. Conclusions/Significance We describe a new non-invasive assay allowing detection and quantification of human exosomes in plasma of melanoma patients. Our results suggest that the Exotest for detection of plasma exosomes carrying tumor-associated antigens may represent a novel tool for clinical management of cancer patients.
                Bookmark

                Author and article information

                Contributors
                federica.felicetti@iss.it
                alessandra.defeo@guest.iss.it
                carolina_coscia@hotmail.com
                rossella.puglisi@iss.it
                francesca.pedini@iss.it
                luca.pasquini@guest.iss
                maria.bellenghi@guest.iss.it
                mariacristina.errico@iss.it
                anelepag@libero.it
                alessandra.care@iss.it
                Journal
                J Transl Med
                J Transl Med
                Journal of Translational Medicine
                BioMed Central (London )
                1479-5876
                24 February 2016
                24 February 2016
                2016
                : 14
                : 56
                Affiliations
                [ ]Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
                [ ]Laboratory of Molecular Oncology, Istituto Dermopatico DELL’IMMACOLATA-IRCCS, 00167 Rome, Italy
                Author information
                http://orcid.org/0000-0003-4106-3342
                Article
                811
                10.1186/s12967-016-0811-2
                4765208
                26912358
                2017de4c-6b9c-4fa9-90ba-a0a871e75d55
                © Felicetti et al. 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 9 July 2015
                : 9 February 2016
                Funding
                Funded by: Italian Association for Cancer Research
                Award ID: IG13247
                Award Recipient :
                Funded by: Italian Ministry of Health
                Award ID: R.F.-2010-2310494
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2016

                Medicine
                (da 3 a 10): melanoma,microrna,exosomes,mir-222,pi3k/akt
                Medicine
                (da 3 a 10): melanoma, microrna, exosomes, mir-222, pi3k/akt

                Comments

                Comment on this article