Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Molecular Characteristics and Biological Functions of Surface-Active and Surfactant Proteins

      1 , 1 , 2
      Annual Review of Biochemistry
      Annual Reviews

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references107

          • Record: found
          • Abstract: found
          • Article: not found

          Surface hydrophobin prevents immune recognition of airborne fungal spores.

          The air we breathe is filled with thousands of fungal spores (conidia) per cubic metre, which in certain composting environments can easily exceed 10(9) per cubic metre. They originate from more than a hundred fungal species belonging mainly to the genera Cladosporium, Penicillium, Alternaria and Aspergillus. Although these conidia contain many antigens and allergens, it is not known why airborne fungal microflora do not activate the host innate immune cells continuously and do not induce detrimental inflammatory responses following their inhalation. Here we show that the surface layer on the dormant conidia masks their recognition by the immune system and hence prevents immune response. To explore this, we used several fungal members of the airborne microflora, including the human opportunistic fungal pathogen Aspergillus fumigatus, in in vitro assays with dendritic cells and alveolar macrophages and in in vivo murine experiments. In A. fumigatus, this surface 'rodlet layer' is composed of hydrophobic RodA protein covalently bound to the conidial cell wall through glycosylphosphatidylinositol-remnants. RodA extracted from conidia of A. fumigatus was immunologically inert and did not induce dendritic cell or alveolar macrophage maturation and activation, and failed to activate helper T-cell immune responses in vivo. The removal of this surface 'rodlet/hydrophobin layer' either chemically (using hydrofluoric acid), genetically (DeltarodA mutant) or biologically (germination) resulted in conidial morphotypes inducing immune activation. All these observations show that the hydrophobic rodlet layer on the conidial cell surface immunologically silences airborne moulds.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recent trends in the biochemistry of surfactin.

            The name surfactin refers to a bacterial cyclic lipopeptide, primarily renowned for its exceptional surfactant power since it lowers the surface tension of water from 72 mN m-1 to 27 mN m-1 at a concentration as low as 20 microM. Although surfactin was discovered about 30 years ago, there has been a revival of interest in this compound over the past decade, triggered by an increasing demand for effective biosurfactants for difficult contemporary ecological problems. This simple molecule also looks very promising as an antitumoral, antiviral and anti-Mycoplasma agent. Structural characteristics show the presence of a heptapeptide with an LLDLLDL chiral sequence linked, via a lactone bond, to a beta-hydroxy fatty acid with 13-15 C atoms. In solution, the molecule exhibits a characteristic "horse saddle" conformation that accounts for its large spectrum of biological activity, making it very attractive for both industrial applications and academic studies. Surfactin biosynthesis is catalysed non-ribosomally by the action of a large multienzyme complex consisting of four modular building blocks, called the surfactin synthetase. The biosynthetic activity involves the multicarrier thiotemplate mechanism and the enzyme is organized in structural domains that place it in the family of peptide synthetases, a class of enzymes involved in peptidic secondary-metabolite synthesis. The srfA operon, the sfp gene encoding a 4'-phosphopantetheinyltransferase and the comA regulatory gene work together for surfactin biosynthesis, while the gene encoding the acyltransferase remains to be isolated. Concerning surfactin production, there is no indication whether the genetic regulation, involving a quorum-sensing mechanism, overrides other regulation factors promoted by the fermentation conditions. Knowledge of the modular arrangement of the peptide synthetases is of the utmost relevance to combinatorial biosynthetic approaches and has been successfully used at the gene level to modify the surfactin template. Biosynthetic and genetic rationales have been described for building variants. A fine study of the structure/function relationships associated with the three-dimensional structure has led to the recognition of the specific residues required for activity. These studies will assist researchers in the selection of molecules with improved and/or refined properties useful in oil and biomedical industries.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Functional Amyloids Composed of Phenol Soluble Modulins Stabilize Staphylococcus aureus Biofilms

              Introduction Staphylococcus aureus is the causative agent of numerous diseases ranging from relatively benign skin conditions to fatal systemic infections. Formation of bacterial biofilms on host tissues and implanted materials contributes to chronic S. aureus infections, as biofilms are exceptionally resistant to host immune response and chemotherapies [1]. Biofilms are multicellular structures encased in a matrix of proteins, polysaccharides, extracellular DNA, and other environmental factors [1], [2]. Biomolecules that digest matrix components (e.g., proteases, DNases, and glycoside hydrolases) can disrupt established biofilms and render detached cells susceptible to antimicrobials [3], [4], [5], [6], [7]. The precise composition of the biofilm matrix varies greatly by strain, physiological state, and nutrient availability [5], [8], [9], [10], [11], [12]. In this study, we examined how growth media affects the composition of the biofilm matrix. This led to the discovery of an extracellular fibril structure in S. aureus biofilms grown in a non-standard rich media. These fibers share morphological and biophysical characteristics with functional bacterial amyloids such as curli in Escherichia coli biofilms, TasA of Bacillus subtilis, and the Fap fimbriae in Pseudomonas aeruginosa [13], [14], [15], [16]. Biochemical and genetic analysis revealed that these fibril structures are composed of small peptides called phenol soluble modulins (PSMs). Mutants incapable of producing PSMs formed biofilms that were susceptible to disassembly by enzymatic degradation and mechanical stress. Previous work has demonstrated that PSMs are surfactant-like peptides that promote biofilm disassembly [17], [18], [19], [20], [21]; exhibit antimicrobial activity against niche bacteria [22], [23], [24]; hinder host immune response by recruiting and lysing neutrophils; and are abundant virulence factors produced by community-associated MRSA strains (CA-MRSA) [18], [25], [26], [27]. The genes encoding the core family of PSM peptides are highly conserved across S. aureus strains: four are expressed from the alpha (αpsm1–4) operon, two are expressed from the beta (βpsm1&2) operon, and the delta hemolysin (hld) is encoded within the regulatory RNA, RNAIII [28], [29], [30]. The significance of the PSMs has only recently been investigated because the coding sequences of the αpsm & βpsm peptides are small enough to have eluded detection by conventional gene annotation programs, and they are still poorly annotated in public databases [29], [30]. We have found that ordered aggregation of PSM peptides into amyloid-like fibers can abrogate the biofilm disassembly activity ascribed to monomeric PSM peptides [12], [17], [18], [19], [20], [21]. Our findings suggest that PSMs can modulate biofilm disassembly using amyloid-like aggregation as a control point for their activity. This is the first report to identify and characterize extracellular fimbriae in the S. aureus biofilm, and our research could lead to new approaches in treating persistent biofilm associated infections. Results Biofilms grown in PNG media resist biofilm disassembly Biofilms that persist in the human body are often resistant to conventional antimicrobial treatment prior to dispersal. To gain insight into how the S. aureus biofilm matrix affects disassembly under different growth conditions, we grew S. aureus flow cell biofilms with various lab media. Next we used enzymes known to target primary matrix components in order to test biofilm resistance (Fig. 1A & 1B). These enzymes include proteinase K (protein), DNaseI (DNA), and dispersin B (polysaccharide). By using a variety of degradative enzymes, we expected to observe complete biofilm eradication. Biofilms grown in tryptic soy broth supplemented with glucose (TSBg) rapidly disassembled after enzymatic treatment (Fig. 1A). However, biofilms grown in peptone-NaCl-glucose (PNG) media did not disassemble after the same enzymatic treatment (Fig. 1B). 10.1371/journal.ppat.1002744.g001 Figure 1 Growth media influences biofilm disassembly. Confocal micrographs of S. aureus SH1000 biofilms grown in TSBg media (A) for 30 hours readily disassemble upon exposure to biofilm matrix degrading enzymes proteinase K, dispersin B, and DNaseI at 0.2 µg/mL each. S. aureus biofilms grown in PNG media (B) for 30 hours fail to disassemble upon exposure to matrix-degrading enzymes. Images are representative of three separate experiments and each side of a grid square represents 20 µm. (C) Biofilms at the air-liquid interface of test tube cultures withstand 1% SDS exposure when grown in PNG media but disassemble when grown in TSBg. Top images show stained test tube biofilms; graph below is quantification of biofilm biomass. * P 90% pure by HPLC. Synthetic peptides were prepared and assayed as previously described [15], [34] to eliminate large aggregates from lyophilization prior to assay. Each dry peptide stock was dissolved to a concentration of 0.5 mg/mL in a 1∶1 mixture of trifluoroacetic acid (TFA) and hexafluoroisopropanol (HFIP). Peptides were then sonicated for 10 minutes and incubated at room temperature for 1 h. Solvent TFA/HFIP was removed by speedvac at room temperature. Dried peptide stocks were stored at −80°C. All assays were performed with equal stoichiometric ratios of 0.1 mg/mL peptide unless otherwise noted. All polymerization assays were performed in 96-well black opaque, polystyrene, TC-treated plates (Corning). Prior to assay, treated peptides were thawed and dissolved in dimethyl sulfoxide (DMSO) to a concentration of 10 mg/mL immediately prior to assay. Freshly dissolved peptides were diluted into sterile ddH2O containing 0.2 mM thioflavin T (ThT) and assayed at room temperature. Fluorescence was measured every 10 minutes after shaking by a Tecan Infinite M200 plate reader at 438 nm excitation and 495 nm emission. ThT fluorescence during polymerization was corrected by subtracting the background intensity of an identical sample without ThT. Additionally, ThT fluorescence and Congo red (CR) absorbance scans were performed on polymerized peptides that were allowed to polymerize for 48 h in ddH2O. Samples were incubated in 0.2 mM ThT or 0.001% (w/v) CR in ddH2O for 15 minutes prior to assay on the Tecan plate reader. CR and ThT scans were corrected by subtracting the background intensity of an identical sample without dye. Circular dichroism spectroscopy Treated peptide stocks were thawed and dissolved in hexafluoroisopropanol (HFIP) to a concentration of 10 mg/mL immediately prior to assay. Triplicate samples consisting of 0.1 mg/mL of each freshly dissolved peptide diluted together in 500 µL sterile ddH2O were incubated with shaking at room temperature for 48 h. Samples were then pelleted at 15,000 RPM for 30 minutes to isolate any aggregated species. The supernatant was carefully removed from the pellet by aspiration and transferred to a clean, sterile eppendorf tube. The remaining pellet was resuspended in 200 µL ddH2O by bath sonication for 10 minutes. The supernatant and pellets of each sample were assayed separately. Far UV circular dichroism (CD) measurements were performed with a Jasco-J715 spectropolarimeter using quartz cells with 0.1 cm path length. CD spectra between 190 and 250 nm were recorded in millidegrees and converted to molar ellipticity using an average MRW of 113 for αPSM1–4, βPSM1&2, and δ-toxin. The average of five scans was recorded at 25°C using a 2 nm bandwidth with a 20 nm min−1 scanning speed. All triplicate samples showed similar ellipticity patterns. Biofilm dispersal assay Synthetic PSM peptides were allowed to polymerize overnight, and fibril formation was verified by TEM imaging. Equivalent concentrations of either polymerized or freshly diluted peptides were added to 24 hours SH1000 biofilms grown in 66% TSB+0.2% glucose and incubated at 37°C for 6 hours. Biofilms were washed to remove non-adherent cells then stained with 0.1% crystal violet, dried, and solublized with acidified ethanol and spectroscopically quantitated at A595. Statistics were performed using a 1-way analysis of variance (ANOVA). Results are expressed as mean ± standard deviation.
                Bookmark

                Author and article information

                Journal
                Annual Review of Biochemistry
                Annu. Rev. Biochem.
                Annual Reviews
                0066-4154
                1545-4509
                June 20 2017
                June 20 2017
                : 86
                : 1
                : 585-608
                Affiliations
                [1 ]Discipline of Pharmacology, School of Medical Sciences and Australian Institute for Nanoscale Science and Technology, University of Sydney, NSW 2006, Australia;,
                [2 ]School of Life and Environmental Sciences and Australian Institute for Nanoscale Science and Technology, University of Sydney, NSW 2006, Australia;
                Article
                10.1146/annurev-biochem-061516-044847
                28125290
                20e3119c-1234-4282-a3f3-8b3916cf550a
                © 2017
                History

                Comments

                Comment on this article