104
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inhibitory Effect of Phragmanthera Incana (Schum.) Harvested from Cocoa ( Theobroma Cacao) and Kolanut ( Cola Nitida) Trees on Fe 2+ induced Lipid Oxidative Stress in Some Rat Tissues - In Vitro

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Evidence in both experimental and clinical studies has shown the participation of oxidative stress in the development and progression of diabetes mellitus. This study therefore, sought to investigate the inhibitory effect of methanolic extract of Phragmanthera incana leaves, a mistletoe species harvested from Cocoa ( Theobroma cacao) and Kolanut ( Cola nitida) on FeSO 4 induced lipid peroxidation in rat pancreas, liver, kidney, heart and brain in vitro. The methanolic extract was prepared with 90% methanol (v/v); subsequently, the antioxidant properties and inhibitory effect of the extract on Fe 2+ induced lipid peroxidation in some rat tissues were determined in vitro. Incubation of the different rat tissues homogenate in the presence of Fe caused a significant increase in the malondialdehyde (MDA) contents of the tissues. However, the methanolic extracts of Phragmanthera incana leaves harvested from both Cocoa and Kolanut trees caused a significant decrease in the MDA contents of all the tissues tested in a dose-dependent manner. However, the extract of Phragmanthera incana leaves harvested from kolanut trees had a better inhibitory effect on Fe 2+- induced lipid peroxidation in the rat tissues homogenates than that of Phragmanthera incana leaves harvested from cocoa trees. This higher inhibitory effect could be attributed to its significantly higher antioxidant properties as typified by their phenolic content, DPPH radical scavenging ability and reducing power. Therefore, oxidative stress associated with diabetes and its other complications could be potentially managed/prevented by harnessing Phragmanthera incana leaves as cheap nutraceuticals. However, Phragmanthera incana leaves harvested from kolanut trees exhibited better antioxidant properties.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Structure-antioxidant activity relationships of flavonoids and phenolic acids.

          The recent explosion of interest in the bioactivity of the flavonoids of higher plants is due, at least in part, to the potential health benefits of these polyphenolic components of major dietary constituents. This review article discusses the biological properties of the flavonoids and focuses on the relationship between their antioxidant activity, as hydrogen donating free radical scavengers, and their chemical structures. This culminates in a proposed hierarchy of antioxidant activity in the aqueous phase. The cumulative findings concerning structure-antioxidant activity relationships in the lipophilic phase derive from studies on fatty acids, liposomes, and low-density lipoproteins; the factors underlying the influence of the different classes of polyphenols in enhancing their resistance to oxidation are discussed and support the contention that the partition coefficients of the flavonoids as well as their rates of reaction with the relevant radicals define the antioxidant activities in the lipophilic phase.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Energetic basis of brain activity: implications for neuroimaging.

            The complex activities of the brain need not distract us from the certainty that it uses energy and performs work very efficiently. The human brain, which claims approximately 2% of our body mass, is responsible for approximately 20% of our body oxygen consumption. In vivo magnetic resonance spectroscopy (MRS) follows the metabolic pathways of energy production (as glucose oxidation) and work (as monitored by the cycling of glutamate and GABA neurotransmitters). In the resting awake state, approximately 80% of energy used by the brain supports events associated with neuronal firing and cycling of GABA and glutamate neurotransmitters. Small differences in neuronal activity between stimulation and control conditions can be measured and localized using functional magnetic resonance imaging (fMRI). MRS and fMRI experiments show that the majority of cerebral activity, which is often disregarded in imaging experiments, is ongoing even when the brain appears to be doing nothing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cinnamon and health.

              Cinnamon has been used as a spice and as traditional herbal medicine for centuries. The available in vitro and animal in vivo evidence suggests that cinnamon has anti-inflammatory, antimicrobial, antioxidant, antitumor, cardiovascular, cholesterol-lowering, and immunomodulatory effects. In vitro studies have demonstrated that cinnamon may act as an insulin mimetic, to potentiate insulin activity or to stimulate cellular glucose metabolism. Furthermore, animal studies have demonstrated strong hypoglycemic properties. However, there are only very few well-controlled clinical studies, a fact that limits the conclusions that can be made about the potential health benefits of cinnamon for free-living humans. The use of cinnamon as an adjunct to the treatment of type 2 diabetes mellitus is the most promising area, but further research is needed before definitive recommendations can be made.
                Bookmark

                Author and article information

                Journal
                Int J Biomed Sci
                Int J Biomed Sci
                IJBS
                International Journal of Biomedical Science : IJBS
                Master Publishing Group
                1550-9702
                1555-2810
                March 2015
                : 11
                : 1
                : 16-22
                Affiliations
                [1 ]Department of Biological Sciences, College of Sciences, Afe Babalola University, Ado-Ekiti, Nigeria;
                [2 ]Department of Botany, Faculty of Science, University of Ibadan, Ibadan, Nigeria;
                [3 ]Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria;
                [4 ]Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
                Author notes
                Corresponding author: O. T. Ogunmefun, Department of Biological Sciences, College of Sciences, Afe Babalola University, Ado-Ekiti, Nigeria. E-mail: yinkatayo_08@ 123456yahoo.com .
                Article
                IJBS-11-16
                10.59566/IJBS.2015.11016
                4392558
                2283d1c6-afd5-4963-a117-95ab49f0145e
                © O. T. Ogunmefun et al. Licensee Master Publishing Group

                This is an open-access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.5/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 21 April 2014
                : 21 May 2014
                Categories
                Original Article

                phragmanthera incana,cocoa,kolanut,antioxidant properties,lipid peroxidation,malondialdehyde

                Comments

                Comment on this article