2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Platelet-to-lymphocyte ratio at 24h after thrombolysis is a prognostic marker in acute ischemic stroke patients

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The changes in the platelet-to-lymphocyte ratio (PLR) before and after recombinant tissue plasminogen activator (rtPA) treatment and the time point at which the PLR is a potentially valuable prognostic predictor in patients wit ischemic stroke remain largely unknown. Therefore, the purpose of this study was to explore the characteristics of the PLR and evaluate their effects on clinical outcomes before and 24 h after rtPA treatment.

          Methods

          This study included 741 consecutive patients with acute ischemic stroke who underwent intravenous thrombolysis with rtPA. We collected data on demographics, vascular risk factors, medication history, and other clinical information pertaining to all patients. Specifically, blood samples for PLR measurement were collected on admission and 24 h after stroke. The outcome was assessed by using the Modified Rankin Scale (mRS) at 3 months and whether death occurred within 3 months or not. Univariate and multivariate logistic regression analysis was used to assess the association of the PLR with the risks of poor outcome (mRS>2) and death. An individualized prediction model was established to predict poor outcome.

          Results

          Of the 741 patients, 255 (34.4%) had poor outcome, and 43 (5.8%) died. The PLR significantly increased 24 h after rtPA in patients with poor outcome and death. Logistic analysis revealed that higher PLR 24 h after rtPA was independently associated with increased risks of poor outcome and death. However, the PLR on admission was not associated with the risks of poor outcome and death. The individualized prediction model for poor outcome based on the 24-h PLR exhibited favorable discrimination (areas under the curves of the training and validation groups: 0.743 and 0.729, respectively), calibration ( P > 0.05), and clinical usefulness.

          Conclusions

          We found the PLR to be a variable that potentially predicts the risks of poor outcome and death in patients with acute ischemic stroke 24 h after rtPA; however, it cannot make the same prediction on admission.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association

          Background and Purpose- The purpose of these guidelines is to provide an up-to-date comprehensive set of recommendations in a single document for clinicians caring for adult patients with acute arterial ischemic stroke. The intended audiences are prehospital care providers, physicians, allied health professionals, and hospital administrators. These guidelines supersede the 2013 Acute Ischemic Stroke (AIS) Guidelines and are an update of the 2018 AIS Guidelines. Methods- Members of the writing group were appointed by the American Heart Association (AHA) Stroke Council's Scientific Statements Oversight Committee, representing various areas of medical expertise. Members were not allowed to participate in discussions or to vote on topics relevant to their relations with industry. An update of the 2013 AIS Guidelines was originally published in January 2018. This guideline was approved by the AHA Science Advisory and Coordinating Committee and the AHA Executive Committee. In April 2018, a revision to these guidelines, deleting some recommendations, was published online by the AHA. The writing group was asked review the original document and revise if appropriate. In June 2018, the writing group submitted a document with minor changes and with inclusion of important newly published randomized controlled trials with >100 participants and clinical outcomes at least 90 days after AIS. The document was sent to 14 peer reviewers. The writing group evaluated the peer reviewers' comments and revised when appropriate. The current final document was approved by all members of the writing group except when relationships with industry precluded members from voting and by the governing bodies of the AHA. These guidelines use the American College of Cardiology/AHA 2015 Class of Recommendations and Level of Evidence and the new AHA guidelines format. Results- These guidelines detail prehospital care, urgent and emergency evaluation and treatment with intravenous and intra-arterial therapies, and in-hospital management, including secondary prevention measures that are appropriately instituted within the first 2 weeks. The guidelines support the overarching concept of stroke systems of care in both the prehospital and hospital settings. Conclusions- These guidelines provide general recommendations based on the currently available evidence to guide clinicians caring for adult patients with acute arterial ischemic stroke. In many instances, however, only limited data exist demonstrating the urgent need for continued research on treatment of acute ischemic stroke.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Decision curve analysis: a novel method for evaluating prediction models.

            Diagnostic and prognostic models are typically evaluated with measures of accuracy that do not address clinical consequences. Decision-analytic techniques allow assessment of clinical outcomes but often require collection of additional information and may be cumbersome to apply to models that yield a continuous result. The authors sought a method for evaluating and comparing prediction models that incorporates clinical consequences,requires only the data set on which the models are tested,and can be applied to models that have either continuous or dichotomous results. The authors describe decision curve analysis, a simple, novel method of evaluating predictive models. They start by assuming that the threshold probability of a disease or event at which a patient would opt for treatment is informative of how the patient weighs the relative harms of a false-positive and a false-negative prediction. This theoretical relationship is then used to derive the net benefit of the model across different threshold probabilities. Plotting net benefit against threshold probability yields the "decision curve." The authors apply the method to models for the prediction of seminal vesicle invasion in prostate cancer patients. Decision curve analysis identified the range of threshold probabilities in which a model was of value, the magnitude of benefit, and which of several models was optimal. Decision curve analysis is a suitable method for evaluating alternative diagnostic and prognostic strategies that has advantages over other commonly used measures and techniques.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010

              Non-fatal health outcomes from diseases and injuries are a crucial consideration in the promotion and monitoring of individual and population health. The Global Burden of Disease (GBD) studies done in 1990 and 2000 have been the only studies to quantify non-fatal health outcomes across an exhaustive set of disorders at the global and regional level. Neither effort quantified uncertainty in prevalence or years lived with disability (YLDs). Of the 291 diseases and injuries in the GBD cause list, 289 cause disability. For 1160 sequelae of the 289 diseases and injuries, we undertook a systematic analysis of prevalence, incidence, remission, duration, and excess mortality. Sources included published studies, case notification, population-based cancer registries, other disease registries, antenatal clinic serosurveillance, hospital discharge data, ambulatory care data, household surveys, other surveys, and cohort studies. For most sequelae, we used a Bayesian meta-regression method, DisMod-MR, designed to address key limitations in descriptive epidemiological data, including missing data, inconsistency, and large methodological variation between data sources. For some disorders, we used natural history models, geospatial models, back-calculation models (models calculating incidence from population mortality rates and case fatality), or registration completeness models (models adjusting for incomplete registration with health-system access and other covariates). Disability weights for 220 unique health states were used to capture the severity of health loss. YLDs by cause at age, sex, country, and year levels were adjusted for comorbidity with simulation methods. We included uncertainty estimates at all stages of the analysis. Global prevalence for all ages combined in 2010 across the 1160 sequelae ranged from fewer than one case per 1 million people to 350,000 cases per 1 million people. Prevalence and severity of health loss were weakly correlated (correlation coefficient -0·37). In 2010, there were 777 million YLDs from all causes, up from 583 million in 1990. The main contributors to global YLDs were mental and behavioural disorders, musculoskeletal disorders, and diabetes or endocrine diseases. The leading specific causes of YLDs were much the same in 2010 as they were in 1990: low back pain, major depressive disorder, iron-deficiency anaemia, neck pain, chronic obstructive pulmonary disease, anxiety disorders, migraine, diabetes, and falls. Age-specific prevalence of YLDs increased with age in all regions and has decreased slightly from 1990 to 2010. Regional patterns of the leading causes of YLDs were more similar compared with years of life lost due to premature mortality. Neglected tropical diseases, HIV/AIDS, tuberculosis, malaria, and anaemia were important causes of YLDs in sub-Saharan Africa. Rates of YLDs per 100,000 people have remained largely constant over time but rise steadily with age. Population growth and ageing have increased YLD numbers and crude rates over the past two decades. Prevalences of the most common causes of YLDs, such as mental and behavioural disorders and musculoskeletal disorders, have not decreased. Health systems will need to address the needs of the rising numbers of individuals with a range of disorders that largely cause disability but not mortality. Quantification of the burden of non-fatal health outcomes will be crucial to understand how well health systems are responding to these challenges. Effective and affordable strategies to deal with this rising burden are an urgent priority for health systems in most parts of the world. Bill & Melinda Gates Foundation. Copyright © 2012 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                26 September 2022
                2022
                : 13
                : 1000626
                Affiliations
                [1] 1 Stroke Center, Department of Neurology, the First Hospital of Jilin University , Chang Chun, Jilin, China
                [2] 2 Jilin Provincial Key Laboratory of Cerebrovascular Disease , Chang Chun, China
                [3] 3 Neuroscience Research Center, the First Hospital of Jilin University , Chang Chun, Jilin, China
                Author notes

                Edited by: Anwen Shao, Zhejiang University, China

                Reviewed by: Xinyi Leng, The Chinese University of Hong Kong, China; Zi-Xian Zhang, Zaozhuang Municipal Hospital, China

                *Correspondence: Yi Yang, yang_yi@ 123456jlu.edu.cn ; Zhen-Ni Guo, zhen1ni2@ 123456jlu.edu.cn

                †These authors have contributed equally to this work and share first authorship

                This article was submitted to Inflammation, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2022.1000626
                9549955
                36225933
                2306af4a-0eb4-4d76-b133-bd74b3336c96
                Copyright © 2022 Sun, Wang, Wang, Sun, Qu, Zhu, Wang, Yan, Jin, Zhang, Yang and Guo

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 22 July 2022
                : 06 September 2022
                Page count
                Figures: 5, Tables: 2, Equations: 0, References: 36, Pages: 10, Words: 4102
                Categories
                Immunology
                Original Research

                Immunology
                platelet-to-lymphocyte ratio,acute ischemic stroke,intravenous thrombolysis,outcome,death

                Comments

                Comment on this article