85
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Membrane Topology Mapping of the O-Antigen Flippase (Wzx), Polymerase (Wzy), and Ligase (WaaL) from Pseudomonas aeruginosa PAO1 Reveals Novel Domain Architectures

      research-article
      , , ,
      mBio
      American Society of Microbiology

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Biosynthesis of B-band lipopolysaccharide (LPS) in Pseudomonas aeruginosa follows the Wzy-dependent pathway, requiring the integral inner membrane proteins Wzx (O-antigen [O-Ag] flippase), Wzy (O-Ag polymerase), and WaaL (O-Ag ligase). For an important first step in deciphering the mechanisms of LPS assembly, we set out to map the membrane topology of these proteins. Random and targeted 3′ wzx, wzy, and waaL truncations were fused to a phoA- lacZα dual reporter capable of displaying both alkaline phosphatase and β-galactosidase activity. The results from truncation fusion expression and the corresponding differential enzyme activity ratios allowed for the assignment of specific regions of the proteins to cytoplasmic, transmembrane (TM), or periplasmic loci. Protein orientation in the inner membrane was confirmed via C-terminal fusion to green fluorescent protein. Our data revealed unique TM domain properties in these proteins, particularly for Wzx, indicating the potential for a charged pore. Novel periplasmic and cytoplasmic loop domains were also uncovered, with the latter in Wzy and WaaL revealing tracts consistent with potential Walker A/B motifs.

          IMPORTANCE

          The opportunistic pathogen Pseudomonas aeruginosa synthesizes its virulence factor lipopolysaccharide via the Wzy-dependent pathway, requiring translocation, polymerization, and ligation of lipid-linked polysaccharide repeat units by the integral inner membrane proteins Wzx, Wzy, and WaaL, respectively. However, structural evidence to help explain the function of these proteins is lacking. Since membrane proteins are difficult to crystallize, topological mapping is an important first step in identifying exposed and membrane-embedded domains. We mapped the topologies of Wzx, Wzy, and WaaL from P. aeruginosa PAO1 by use of truncation libraries of a randomly fused C-terminal reporter capable of different enzyme activities in the periplasm and cytoplasm. Topology maps were created based directly on residue localization data, eliminating the bias associated with reliance on multiple topology prediction algorithms for initial generation of consensus transmembrane domain localizations. Consequently, we have identified novel periplasmic, cytoplasmic, and transmembrane domain properties that would help to explain the proposed functions of Wzx, Wzy, and WaaL.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold.

          The alpha- and beta-subunits of membrane-bound ATP synthase complex bind ATP and ADP: beta contributes to catalytic sites, and alpha may be involved in regulation of ATP synthase activity. The sequences of beta-subunits are highly conserved in Escherichia coli and bovine mitochondria. Also alpha and beta are weakly homologous to each other throughout most of their amino acid sequences, suggesting that they have common functions in catalysis. Related sequences in both alpha and beta and in other enzymes that bind ATP or ADP in catalysis, notably myosin, phosphofructokinase, and adenylate kinase, help to identify regions contributing to an adenine nucleotide binding fold in both ATP synthase subunits.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist.

            Pseudomonas aeruginosa is an ubiquitous pathogen capable of infecting virtually all tissues. A large variety of virulence factors contribute to its importance in burn wounds, lung infection and eye infection. Prominent factors include pili, flagella, lipopolysaccharide, proteases, quorum sensing, exotoxin A and exoenzymes secreted by the type III secretion system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Protein structure prediction servers at University College London

              A number of state-of-the-art protein structure prediction servers have been developed by researchers working in the Bioinformatics Unit at University College London. The popular PSIPRED server allows users to perform secondary structure prediction, transmembrane topology prediction and protein fold recognition. More recent servers include DISOPRED for the prediction of protein dynamic disorder and DomPred for domain boundary prediction. These servers are available from our software home page at .
                Bookmark

                Author and article information

                Journal
                mBio
                MBio
                mbio
                mbio
                mBio
                mBio
                American Society of Microbiology (1752 N St., N.W., Washington, DC )
                2150-7511
                24 August 2010
                Jul-Aug 2010
                : 1
                : 3
                : e00189-10
                Affiliations
                Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
                Author notes
                Address correspondence to Joseph S. Lam, jlam@ 123456uoguelph.ca .
                [*]

                Present address: Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta T1J 4B1, Canada

                Editor E. Peter Greenberg, University of Washington

                Article
                mBio00189-10
                10.1128/mBio.00189-10
                2932511
                20824106
                2322b878-845f-4f99-979c-768e0c273d4b
                Copyright © 2010 Islam et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 17 July 2010
                : 20 July 2010
                Categories
                Research Article

                Life sciences
                Life sciences

                Comments

                Comment on this article