3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Superhydrophobic states of 2D nanomaterials controlled by atomic defects can modulate cell adhesion

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We report the synthesis of superhydrophobic two-dimensional (2D) transition metal dichalcogenides by modulation of the degree of atomic defects. The presence of atomic vacancies in 2D molybdenum disulfide (MoS 2) nanoassemblies dictated hydrophilic-to-hydrophobic transition and subsequent cell adhesion.

          Abstract

          We introduced a new concept to the control of wetting characteristics by modulating the degree of atomic defects of two-dimensional transition metal dichalcogenide nanoassemblies of molybdenum disulfide. This work shed new light on the role of atomic vacancies on wetting characteristic that can be leveraged to develop a new class of superhydrophobic surfaces for various applications without altering their topography.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Functionalized Nano-MoS2 with Peroxidase Catalytic and Near-Infrared Photothermal Activities for Safe and Synergetic Wound Antibacterial Applications.

          We have developed a biocompatible antibacterial system based on polyethylene glycol functionalized molybdenum disulfide nanoflowers (PEG-MoS2 NFs). The PEG-MoS2 NFs have high near-infrared (NIR) absorption and peroxidase-like activity, which can efficiently catalyze decomposition of low concentration of H2O2 to generate hydroxyl radicals (·OH). The conversion of H2O2 into ·OH can avoid the toxicity of high concentration of H2O2 and the ·OH has higher antibacterial activity, making resistant bacteria more vulnerable and wounds more easily cured. The PEG-MoS2 NFs combine the catalysis with NIR photothermal effect, providing a rapid and effective killing outcome in vitro for Gram-negative ampicillin resistant Escherichia coli (Amp(r) E. coli) and Gram-positive endospore-forming Bacillus subtilis (B. subtilis) as compared to catalytic treatment or photothermal therapy (PTT) alone. Wound healing results indicate that the synergy antibacterial system could be conveniently used for wound disinfection in vivo. Interestingly, glutathione (GSH) oxidation can be accelerated due to the 808 nm irradiation induced hyperthermia at the presence of PEG-MoS2 NFs proved by X-ray near-edge absorption spectra and X-ray spectroscopy. The accelerated GSH oxidation can result in bacterial death more easily. A mechanism based on ·OH-enhanced PTT is proposed to explain the antibacterial process.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Defects Engineered Monolayer MoS2 for Improved Hydrogen Evolution Reaction.

            MoS2 is a promising and low-cost material for electrochemical hydrogen production due to its high activity and stability during the reaction. However, the efficiency of hydrogen production is limited by the amount of active sites, for example, edges, in MoS2. Here, we demonstrate that oxygen plasma exposure and hydrogen treatment on pristine monolayer MoS2 could introduce more active sites via the formation of defects within the monolayer, leading to a high density of exposed edges and a significant improvement of the hydrogen evolution activity. These as-fabricated defects are characterized at the scale from macroscopic continuum to discrete atoms. Our work represents a facile method to increase the hydrogen production in electrochemical reaction of MoS2 via defect engineering, and helps to understand the catalytic properties of MoS2.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Porous boron nitride nanosheets for effective water cleaning.

              Effective removal of oils, organic solvents and dyes from water is of significant, global importance for environmental and water source protection. Advanced sorbent materials with excellent sorption capacity need to be developed. Here we report porous boron nitride nanosheets with very high specific surface area that exhibit excellent sorption performances for a wide range of oils, solvents and dyes. The nanostructured material absorbs up to 33 times its own weight in oils and organic solvents while repelling water. The saturated boron nitride nanosheets can be readily cleaned for reuse by burning or heating in air because of their strong resistance to oxidation. This easy recyclability further demonstrates the potential of porous boron nitride nanosheets for water purification and treatment.
                Bookmark

                Author and article information

                Journal
                CHCOFS
                Chemical Communications
                Chem. Commun.
                Royal Society of Chemistry (RSC)
                1359-7345
                1364-548X
                2019
                2019
                Affiliations
                [1 ]Department of Biomedical Engineering
                [2 ]Texas A&M University
                [3 ]College Station
                [4 ]USA
                Article
                10.1039/C9CC00547A
                7004258
                31172998
                232f0de9-e6e3-44c5-8441-2479343a3e40
                © 2019

                http://creativecommons.org/licenses/by-nc/3.0/

                History

                Comments

                Comment on this article