3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Utilizing Complex-valued Network for Learning to Compare Image Patches

      Preprint
      , , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          At present, the great achievements of convolutional neural network(CNN) in feature and metric learning have attracted many researchers. However, the vast majority of deep network architectures have been used to represent based on real values. The research of complex-valued networks is seldom concerned due to the absence of effective models and suitable distance of complex-valued vector. Motived by recent works, complex vectors have been shown to have a richer representational capacity and efficient complex blocks have been reported, we propose a new approach for learning image descriptors with complex numbers to compare image patches. We also propose a new architecture to learn image similarity function directly based on complex-valued network. We show that our models can significantly outperform the state-of-the art on benchmark datasets. We make the source code of our models publicly available.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: not found
          • Article: not found

          The complex backpropagation algorithm

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Discriminative learning of local image descriptors.

            In this paper, we explore methods for learning local image descriptors from training data. We describe a set of building blocks for constructing descriptors which can be combined together and jointly optimized so as to minimize the error of a nearest-neighbor classifier. We consider both linear and nonlinear transforms with dimensionality reduction, and make use of discriminant learning techniques such as Linear Discriminant Analysis (LDA) and Powell minimization to solve for the parameters. Using these techniques, we obtain descriptors that exceed state-of-the-art performance with low dimensionality. In addition to new experiments and recommendations for descriptor learning, we are also making available a new and realistic ground truth data set based on multiview stereo data.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Complex domain backpropagation

                Bookmark

                Author and article information

                Journal
                29 November 2018
                Article
                1811.12035
                2346ff5b-015e-45f6-8013-71d59f209d8b

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                cs.CV

                Computer vision & Pattern recognition
                Computer vision & Pattern recognition

                Comments

                Comment on this article