49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Archaeal abundance in post-mortem ruminal digesta may help predict methane emissions from beef cattle

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Methane produced from 35 Aberdeen-Angus and 33 Limousin cross steers was measured in respiration chambers. Each group was split to receive either a medium- or high-concentrate diet. Ruminal digesta samples were subsequently removed to investigate correlations between methane emissions and the rumen microbial community, as measured by qPCR of 16S or 18S rRNA genes. Diet had the greatest influence on methane emissions. The high-concentrate diet resulted in lower methane emissions ( P < 0.001) than the medium-concentrate diet. Methane was correlated, irrespective of breed, with the abundance of archaea (R = 0.39), bacteria (−0.47), protozoa (0.45), Bacteroidetes (−0.37) and Clostridium Cluster XIVa (−0.35). The archaea:bacteria ratio provided a stronger correlation (0.49). A similar correlation was found with digesta samples taken 2–3 weeks later at slaughter. This finding could help enable greenhouse gas emissions of large animal cohorts to be predicted from samples taken conveniently in the abattoir.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Methane emissions from cattle.

          Increasing atmospheric concentrations of methane have led scientists to examine its sources of origin. Ruminant livestock can produce 250 to 500 L of methane per day. This level of production results in estimates of the contribution by cattle to global warming that may occur in the next 50 to 100 yr to be a little less than 2%. Many factors influence methane emissions from cattle and include the following: level of feed intake, type of carbohydrate in the diet, feed processing, addition of lipids or ionophores to the diet, and alterations in the ruminal microflora. Manipulation of these factors can reduce methane emissions from cattle. Many techniques exist to quantify methane emissions from individual or groups of animals. Enclosure techniques are precise but require trained animals and may limit animal movement. Isotopic and nonisotopic tracer techniques may also be used effectively. Prediction equations based on fermentation balance or feed characteristics have been used to estimate methane production. These equations are useful, but the assumptions and conditions that must be met for each equation limit their ability to accurately predict methane production. Methane production from groups of animals can be measured by mass balance, micrometeorological, or tracer methods. These techniques can measure methane emissions from animals in either indoor or outdoor enclosures. Use of these techniques and knowledge of the factors that impact methane production can result in the development of mitigation strategies to reduce methane losses by cattle. Implementation of these strategies should result in enhanced animal productivity and decreased contributions by cattle to the atmospheric methane budget.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Methanogenic archaea: ecologically relevant differences in energy conservation.

            Most methanogenic archaea can reduce CO(2) with H(2) to methane, and it is generally assumed that the reactions and mechanisms of energy conservation that are involved are largely the same in all methanogens. However, this does not take into account the fact that methanogens with cytochromes have considerably higher growth yields and threshold concentrations for H(2) than methanogens without cytochromes. These and other differences can be explained by the proposal outlined in this Review that in methanogens with cytochromes, the first and last steps in methanogenesis from CO(2) are coupled chemiosmotically, whereas in methanogens without cytochromes, these steps are energetically coupled by a cytoplasmic enzyme complex that mediates flavin-based electron bifurcation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii.

              Prebiotics are food ingredients that improve health by modulating the colonic microbiota. The bifidogenic effect of the prebiotic inulin is well established; however, it remains unclear which species of Bifidobacterium are stimulated in vivo and whether bacterial groups other than lactic acid bacteria are affected by inulin consumption. Changes in the faecal microbiota composition were examined by real-time PCR in twelve human volunteers after ingestion of inulin (10 g/d) for a 16-d period in comparison with a control period without any supplement intake. The prevalence of most bacterial groups examined did not change after inulin intake, although the low G+C % Gram-positive species Faecalibacterium prausnitzii exhibited a significant increase (10.3% for control period v. 14.5% during inulin intake, P=0.019). The composition of the genus Bifidobacterium was studied in four of the volunteers by clone library analysis. Between three and five Bifidobacterium spp. were found in each volunteer. Bifidobacterium adolescentis and Bifidobacterium longum were present in all volunteers, and Bifidobacterium pseudocatenulatum, Bifidobacterium animalis, Bifidobacterium bifidum and Bifidobacterium dentium were also detected. Real-time PCR was employed to quantify the four most prevalent Bifidobacterium spp., B. adolescentis, B. longum, B. pseudocatenulatum and B. bifidum, in ten volunteers carrying detectable levels of bifidobacteria. B. adolescentis showed the strongest response to inulin consumption, increasing from 0.89 to 3.9% of the total microbiota (P=0.001). B. bifidum was increased from 0.22 to 0.63% (P<0.001) for the five volunteers for whom this species was present.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                31 July 2014
                2014
                : 4
                : 5892
                Affiliations
                [1 ]Rowett Institute of Nutrition and Health, University of Aberdeen , Bucksburn, Aberdeen AB21 9SB, UK
                [2 ]SRUC , West Mains Road, Edinburgh EH9 3JG, UK
                Author notes
                Article
                srep05892
                10.1038/srep05892
                5376199
                25081098
                239cc3b7-867a-412d-ad08-c17dfb963a29
                Copyright © 2014, Macmillan Publishers Limited. All rights reserved

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/

                History
                : 11 June 2013
                : 07 July 2014
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article