Blog
About

6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Types and origins of bacterial membrane vesicles

      , ,

      Nature Reviews Microbiology

      Springer Nature America, Inc

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Most bacteria release membrane vesicles (MVs) that contain specific cargo molecules and have diverse functions, including the transport of virulence factors, DNA transfer, interception of bacteriophages, antibiotics and eukaryotic host defence factors, cell detoxification and bacterial communication. MVs not only are abundant in nature but also show great promise for applications in biomedicine and nanotechnology. MVs were first discovered to originate from controlled blebbing of the outer membrane of Gram-negative bacteria and are therefore often called outer-membrane vesicles (OMVs). However, recent work has shown that Gram-positive bacteria can produce MVs, that different types of MVs besides OMVs exist and that, in addition to membrane blebbing, MVs can also be formed by endolysin-triggered cell lysis. In this Review, we provide an overview of the structures and compositions of the various vesicle types and discuss novel formation routes, which may lead to distinct vesicle types that serve particular functions.

          Related collections

          Most cited references 131

          • Record: found
          • Abstract: found
          • Article: not found

          Biological functions and biogenesis of secreted bacterial outer membrane vesicles.

           Adam Kulp,  Meta Kuehn (2009)
          Gram-negative bacteria produce outer membrane vesicles (OMVs) that contain biologically active proteins and perform diverse biological processes. Unlike other secretion mechanisms, OMVs enable bacteria to secrete insoluble molecules in addition to and in complex with soluble material. OMVs allow enzymes to reach distant targets in a concentrated, protected, and targeted form. OMVs also play roles in bacterial survival: Their production is a bacterial stress response and important for nutrient acquisition, biofilm development, and pathogenesis. Key characteristics of OMV biogenesis include outward bulging of areas lacking membrane-peptidoglycan bonds, the capacity to upregulate vesicle production without also losing outer membrane integrity, enrichment or exclusion of certain proteins and lipids, and membrane fission without direct energy from ATP/GTP hydrolysis. Comparisons of similar budding mechanisms from diverse biological domains have provided new insight into evaluating mechanisms for outer membrane vesiculation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions.

            Outer-membrane vesicles (OMVs) are spherical buds of the outer membrane filled with periplasmic content and are commonly produced by Gram-negative bacteria. The production of OMVs allows bacteria to interact with their environment, and OMVs have been found to mediate diverse functions, including promoting pathogenesis, enabling bacterial survival during stress conditions and regulating microbial interactions within bacterial communities. Additionally, because of this functional versatility, researchers have begun to explore OMVs as a platform for bioengineering applications. In this Review, we discuss recent advances in the study of OMVs, focusing on new insights into the mechanisms of biogenesis and the functions of these vesicles.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Here a virus, there a virus, everywhere the same virus?

              There are an estimated 10(31) viruses on Earth, most of which are phages that infect bacteria. Metagenomic analyses have shown that environmental viral communities are incredibly diverse. There are an estimated 5000 viral genotypes in 200 liters of seawater and possibly a million different viral genotypes in one kilogram of marine sediment. By contrast, some culturing and molecular studies have found that viruses move between different biomes. Together, these findings suggest that viral diversity could be high on a local scale but relatively limited globally. Also, by moving between environments, viruses can facilitate horizontal gene transfer.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Microbiology
                Nat Rev Microbiol
                Springer Nature America, Inc
                1740-1526
                1740-1534
                November 5 2018
                Article
                10.1038/s41579-018-0112-2
                30397270
                © 2018

                http://www.springer.com/tdm

                Comments

                Comment on this article