2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multiple pathways to herbivory underpinned deep divergences in ornithischian evolution

      , , , ,
      Current Biology
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references107

          • Record: found
          • Abstract: found
          • Article: not found

          Convergence, adaptation, and constraint.

          Convergent evolution of similar phenotypic features in similar environmental contexts has long been taken as evidence of adaptation. Nonetheless, recent conceptual and empirical developments in many fields have led to a proliferation of ideas about the relationship between convergence and adaptation. Despite criticism from some systematically minded biologists, I reaffirm that convergence in taxa occupying similar selective environments often is the result of natural selection. However, convergent evolution of a trait in a particular environment can occur for reasons other than selection on that trait in that environment, and species can respond to similar selective pressures by evolving nonconvergent adaptations. For these reasons, studies of convergence should be coupled with other methods-such as direct measurements of selection or investigations of the functional correlates of trait evolution-to test hypotheses of adaptation. The independent acquisition of similar phenotypes by the same genetic or developmental pathway has been suggested as evidence of constraints on adaptation, a view widely repeated as genomic studies have documented phenotypic convergence resulting from change in the same genes, sometimes even by the same mutation. Contrary to some claims, convergence by changes in the same genes is not necessarily evidence of constraint, but rather suggests hypotheses that can test the relative roles of constraint and selection in directing phenotypic evolution. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Adaptive radiation, ecological opportunity, and evolutionary determinism. American Society of Naturalists E. O. Wilson award address.

            Adaptive radiation refers to diversification from an ancestral species that produces descendants adapted to use a great variety of distinct ecological niches. In this review, I examine two aspects of adaptive radiation: first, that it results from ecological opportunity and, second, that it is deterministic in terms of its outcome and evolutionary trajectory. Ecological opportunity is usually a prerequisite for adaptive radiation, although in some cases, radiation can occur in the absence of preexisting opportunity. Nonetheless, many clades fail to radiate although seemingly in the presence of ecological opportunity; until methods are developed to identify and quantify ecological opportunity, the concept will have little predictive utility in understanding a priori when a clade might be expected to radiate. Although predicted by theory, replicated adaptive radiations occur only rarely, usually in closely related and poorly dispersing taxa found in the same region on islands or in lakes. Contingencies of a variety of types may usually preclude close similarity in the outcome of evolutionary diversification in other situations. Whether radiations usually unfold in the same general sequence is unclear because of the unreliability of methods requiring phylogenetic reconstruction of ancestral events. The synthesis of ecological, phylogenetic, experimental, and genomic advances promises to make the coming years a golden age for the study of adaptive radiation; natural history data, however, will always be crucial to understanding the forces shaping adaptation and evolutionary diversification.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adaptive radiation: contrasting theory with data.

              Biologists have long been fascinated by the exceptionally high diversity displayed by some evolutionary groups. Adaptive radiation in such clades is not only spectacular, but is also an extremely complex process influenced by a variety of ecological, genetic, and developmental factors and strongly dependent on historical contingencies. Using modeling approaches, we identify 10 general patterns concerning the temporal, spatial, and genetic/morphological properties of adaptive radiation. Some of these are strongly supported by empirical work, whereas for others, empirical support is more tentative. In almost all cases, more data are needed. Future progress in our understanding of adaptive radiation will be most successful if theoretical and empirical approaches are integrated, as has happened in other areas of evolutionary biology.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Current Biology
                Current Biology
                Elsevier BV
                09609822
                January 2023
                January 2023
                Article
                10.1016/j.cub.2022.12.019
                36603586
                23ce71ef-130a-4066-bad8-dfcd0a34565c
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article