0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Formation Mechanisms of Hexagonal Boron Nitride Nanosheets in Solvothermal Exfoliation.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Solvothermal techniques are widely used to exfoliate many two-dimensional materials, but the formation mechanisms of these nanomaterials have not been clearly revealed. Herein, we discovered the dissociation of hexagonal boron nitride (h-BN) in solvothermal exfoliation evidenced by the formation of B(OH)3, NH4B5O8·4H2O, and (NH4)2B10O16·8H2O. In the selected solvents, the lateral sizes of the formed boron nitride nanosheets (BNNSs) are increased in the order of N-methyl-2-pyrrolidone (NMP), N,N-dimethylformamide (DMF), acetonitrile (MeCN), and isopropanol (IPA), suggesting the decreased dissolving abilities of these solvents to h-BN in turn. The dissociation behaviors are the properties of solvents themselves, but the inclusion of lithium chloride (LiCl) and cetyltrimethylammonium bromide (CTAB) can elevate the dissociation degree and yield BNNSs with smaller lateral sizes due to the intercalating effects. The cation-π interactions make CTAB more effective in obtaining uniform BNNSs than using the neutral halogenated hydrocarbons as assistant reagents. The dissociation abilities of the solvents have strong relationships with the surface tension, Hansen solubility parameters distances (Ra), and polarities, whereas there is little relevance with the pressures. Meanwhile, we also observed the cracking of CTAB and the polymerization of MeCN in these reactions. Our findings indicate that the impurities are prone to be attached to the BNNSs exfoliated by the solvothermal route.

          Related collections

          Author and article information

          Journal
          Langmuir
          Langmuir : the ACS journal of surfaces and colloids
          American Chemical Society (ACS)
          1520-5827
          0743-7463
          Jan 31 2023
          : 39
          : 4
          Affiliations
          [1 ] College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an710021, China.
          Article
          10.1021/acs.langmuir.2c03049
          36657978
          23cf9908-ed12-4041-9773-037ad99035d0
          History

          Comments

          Comment on this article