Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Floquet dynamics of ultracold atoms in optical lattices with a parametrically modulated trapping potential

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Experiments with ultracold atoms in optical lattices usually involve a weak parabolic trapping potential which merely serves to confine the atoms, but otherwise remains negligible. In contrast, we suggest a different class of experiments in which the presence of a stronger trap is an essential part of the set-up. Because the trap-modified on-site energies exhibit a slowly varying level spacing, similar to that of an anharmonic oscillator, an additional time-periodic trap modulation with judiciously chosen parameters creates nonlinear resonances which enable efficient Floquet engineering. We employ a Mathieu approximation for constructing the near-resonant Floquet states in an accurate manner and demonstrate the emergence of effective ground states from the resonant trap eigenstates. Moreover, we show that the population of the Floquet states is strongly affected by the phase of a sudden turn-on of the trap modulation, which leads to significantly modified and rich dynamics. As a guideline for further studies, we argue that the deliberate population of only the resonance-induced effective ground states will allow one to realize Floquet condensates which follow classical periodic orbits, thus providing challenging future perspectives for the investigation of the quantum-classical correspondence.

          Related collections

          Author and article information

          Journal
          03 May 2024
          Article
          2405.02125
          242d9450-ea23-4f4e-9fc3-4d3941b92268

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          13 pages, 10 figures
          cond-mat.quant-gas

          Quantum gases & Cold atoms
          Quantum gases & Cold atoms

          Comments

          Comment on this article