37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A time-calibrated molecular phylogeny of the precious corals: reconciling discrepancies in the taxonomic classification and insights into their evolutionary history

      research-article
      1 , 3 , 2 , 1 ,
      BMC Evolutionary Biology
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Seamount-associated faunas are often considered highly endemic but isolation and diversification processes leading to such endemism have been poorly documented at those depths. Likewise, species delimitation and phylogenetic studies in deep-sea organisms remain scarce, due to the difficulty in obtaining samples, and sometimes controversial. The phylogenetic relationships within the precious coral family Coralliidae remain largely unexplored and the monophyly of its two constituent genera, Corallium Cuvier and Paracorallium Bayer & Cairns, has not been resolved. As traditionally recognized, the diversity of colonial forms among the various species correlates with the diversity in shape of their supporting axis, but the phylogenetic significance of these characters remains to be tested. We thus used mitochondrial sequence data to evaluate the monophyly of Corallium and Paracorallium and the species boundaries for nearly all named taxa in the family. Species from across the coralliid range, including material from Antarctica, Hawaii, Japan, New Zealand, Taiwan, Tasmania, the eastern Pacific and the western Atlantic were examined.

          Results

          The concatenated analysis of five mitochondrial regions (COI, 16S rRNA, ND2, and ND3-ND6) recovered two major coralliid clades. One clade is composed of two subgroups, the first including Corallium rubrum, the type species of the genus, together with a small group of Paracorallium species ( P. japonicum and P. tortuosum) and C. medea (clade I-A); the other subgroup includes a poorly-resolved assemblage of six Corallium species ( C. abyssale, C. ducale, C. imperiale, C. laauense, C. niobe, and C. sulcatum; clade I-B). The second major clade is well resolved and includes species of Corallium and Paracorallium ( C. elatius, C. kishinouyei, C. konojoi, C. niveum, C. secundum, Corallium sp., Paracorallium nix, Paracorallium thrinax and Paracorallium spp.). A traditional taxonomic study of this clade delineated 11 morphospecies that were congruent with the general mixed Yule-coalescent (GMYC) model. A multilocus species-tree approach also identified the same two well-supported clades, being Clade I-B more recent in the species tree (18.0-15.9 mya) than in the gene tree (35.2-15.9 mya). In contrast, the diversification times for Clade II were more ancient in the species tree (136.4-41.7 mya) than in the gene tree (66.3-16.9 mya).

          Conclusions

          Our results provide no support for the taxonomic status of the two currently recognized genera in the family Coralliidae. Given that Paracorallium species were all nested within Corallium, we recognize the coralliid genus Corallium, which includes the type species of the family, and thus consider Paracorallium a junior synonym of Corallium. We propose the use of the genus Hemicorallium Gray for clade I-B (species with long rod sclerites, cylindrical autozooids and smooth axis). Species delimitation in clade I-B remains unclear and the molecular resolution for Coralliidae species is inconsistent in the two main clades. Some species have wide distributions, recent diversification times and low mtDNA divergence whereas other species exhibit narrower allopatric distributions, older diversification times and greater levels of mtDNA resolution.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Bayesian species delimitation using multilocus sequence data.

          In the absence of recent admixture between species, bipartitions of individuals in gene trees that are shared across loci can potentially be used to infer the presence of two or more species. This approach to species delimitation via molecular sequence data has been constrained by the fact that genealogies for individual loci are often poorly resolved and that ancestral lineage sorting, hybridization, and other population genetic processes can lead to discordant gene trees. Here we use a Bayesian modeling approach to generate the posterior probabilities of species assignments taking account of uncertainties due to unknown gene trees and the ancestral coalescent process. For tractability, we rely on a user-specified guide tree to avoid integrating over all possible species delimitations. The statistical performance of the method is examined using simulations, and the method is illustrated by analyzing sequence data from rotifers, fence lizards, and human populations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Delimiting species without monophyletic gene trees.

            Genetic data are frequently used to delimit species, where species status is determined on the basis of an exclusivity criterium, such as reciprocal monophyly. Not only are there numerous empirical examples of incongruence between the boundaries inferred from such data compared to other sources like morphology -- especially with recently derived species, but population genetic theory also clearly shows that an inevitable bias in species status results because genetic thresholds do not explicitly take into account how the timing of speciation influences patterns of genetic differentiation. This study represents a fundamental shift in how genetic data might be used to delimit species. Rather than equating gene trees with a species tree or basing species status on some genetic threshold, the relationship between the gene trees and the species history is modeled probabilistically. Here we show that the same theory that is used to calculate the probability of reciprocal monophyly can also be used to delimit species despite widespread incomplete lineage sorting. The results from a preliminary simulation study suggest that very recently derived species can be accurately identified long before the requisite time for reciprocal monophyly to be achieved following speciation. The study also indicates the importance of sampling, both with regards to loci and individuals. Withstanding a thorough investigation into the conditions under which the coalescent-based approach will be effective, namely how the timing of divergence relative to the effective population size of species affects accurate species delimitation, the results are nevertheless consistent with other recent studies (aimed at inferring species relationships), showing that despite the lack of monophyletic gene trees, a signal of species divergence persists and can be extracted. Using an explicit model-based approach also avoids two primary problems with species delimitation that result when genetic thresholds are applied with genetic data -- the inherent biases in species detection arising from when and how speciation occurred, and failure to take into account the high stochastic variance of genetic processes. Both the utility and sensitivities of the coalescent-based approach outlined here are discussed; most notably, a model-based approach is essential for determining whether incompletely sorted gene lineages are (or are not) consistent with separate species lineages, and such inferences require accurate model parameterization (i.e., a range of realistic effective population sizes relative to potential times of divergence for the purported species). It is the goal (and motivation of this study) that genetic data might be used effectively as a source of complementation to other sources of data for diagnosing species, as opposed to the exclusion of other evidence for species delimitation, which will require an explicit consideration of the effects of the temporal dynamic of lineage splitting on genetic data.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sequence-based species delimitation for the DNA taxonomy of undescribed insects.

              Cataloging the very large number of undescribed species of insects could be greatly accelerated by automated DNA based approaches, but procedures for large-scale species discovery from sequence data are currently lacking. Here, we use mitochondrial DNA variation to delimit species in a poorly known beetle radiation in the genus Rivacindela from arid Australia. Among 468 individuals sampled from 65 sites and multiple morphologically distinguishable types, sequence variation in three mtDNA genes (cytochrome oxidase subunit 1, cytochrome b, 16S ribosomal RNA) was strongly partitioned between 46 or 47 putative species identified with quantitative methods of species recognition based on fixed unique ("diagnostic") characters. The boundaries between groups were also recognizable from a striking increase in branching rate in clock-constrained calibrated trees. Models of stochastic lineage growth (Yule models) were combined with coalescence theory to develop a new likelihood method that determines the point of transition from species-level (speciation and extinction) to population-level (coalescence) evolutionary processes. Fitting the location of the switches from speciation to coalescent nodes on the ultrametric tree of Rivacindela produced a transition in branching rate occurring at 0.43 Mya, leading to an estimate of 48 putative species (confidence interval for the threshold ranging from 47 to 51 clusters within 2 logL units). Entities delimited in this way exhibited biological properties of traditionally defined species, showing coherence of geographic ranges, broad congruence with morphologically recognized species, and levels of sequence divergence typical for closely related species of insects. The finding of discontinuous evolutionary groupings that are readily apparent in patterns of sequence variation permits largely automated species delineation from DNA surveys of local communities as a scaffold for taxonomy in this poorly known insect group.
                Bookmark

                Author and article information

                Contributors
                Journal
                BMC Evol Biol
                BMC Evol. Biol
                BMC Evolutionary Biology
                BioMed Central
                1471-2148
                2012
                18 December 2012
                : 12
                : 246
                Affiliations
                [1 ]Departamento de Ciencias Biológicas-Facultad de Ciencias, Laboratorio de Biología Molecular Marina (BIOMMAR), Universidad de los Andes, Carrera 1E No 18A-10, Bogotá, Colombia
                [2 ]Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
                [3 ]Present address: Departamento de Ciencias Básicas, Programa de Biología, Universidad de la Salle, Carrera 2 No. 10-70, Bogotá, Colombia
                Article
                1471-2148-12-246
                10.1186/1471-2148-12-246
                3565870
                23249327
                243a6f6e-6423-4886-b32b-894e2add6ec8
                Copyright ©2012 Ardila et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 8 May 2012
                : 26 November 2012
                Categories
                Research Article

                Evolutionary Biology
                Evolutionary Biology

                Comments

                Comment on this article