Blog
About

10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Ras protein is involved in the physiological regulation of phospholipase D by platelet derived growth factor.

      Oncogene

      ras Proteins, physiology, Enzyme Activation, Cell Transformation, Neoplastic, Mice, Phospholipase D, Platelet-Derived Growth Factor, pharmacology, Protein Kinase C, Rats, Signal Transduction, 3T3 Cells, Animals

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lipid-derived metabolites play an important role in the regulation of cell responses to external stimuli, including cell growth control, transformation and apoptosis. Phospholipase D (PLD) is one of the critical elements in the regulation of lipid metabolism and the generation of second messengers, some of them involved in cell growth control. Oncogenic Ras proteins affect the activity of PLD by two alternate mechanisms, involving a positive activation and a feedback negative loop. Here we investigate the involvement of the proto-oncogenic Ras protein in the physiological activation of PLD induced by platelet-derived growth factor (PDGF). Over-expression of the wild type Ras protein or some of its regulatory components, such as Shc or Grb2, induces an amplification of PLD activation by PDGF challenge. Furthermore, blocking the endogenous Ras by expression of the dominant negative mutant, H-Ras-Asn17 completely eliminated the activation of PLD by PDGF. Thus, PDGF requires a complex system for PLD regulation implying the existence of at least two positive regulatory pathways, a Ras-dependent and a PKC-dependent mechanism. These results imply that PLD is an important element in signaling by Ras proteins that is altered after ras-induced transformation.

          Related collections

          Author and article information

          Journal
          10.1038/sj.onc.1203323
          10656691

          Comments

          Comment on this article