Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Transverse tubular system depolarization reduces tetanic force in rat skeletal muscle fibers by impairing action potential repriming.

      American Journal of Physiology - Cell Physiology
      Action Potentials, physiology, Animals, Calcium, metabolism, Dose-Response Relationship, Drug, Male, Muscle Contraction, drug effects, Muscle, Skeletal, cytology, Potassium, pharmacology, Rats, Rats, Long-Evans, Sarcoplasmic Reticulum, Tetany, Time Factors

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          When muscle fibers are repeatedly stimulated, they may become depolarized and force output decline. Excitation of the transverse tubular system (T-system) is critical for activation, but its role in muscle fatigue is poorly understood. Here, mechanically skinned fibers from rat fast-twitch muscle were used, because the sarcolemma is absent but the T-system retains normal excitability and its properties can be studied in isolation. The T-system membrane was fully polarized by bathing the skinned fiber in an internal solution with 126 mM K(+) (control solution) or set at partially depolarized levels (approximately -63 and -58 mV) in solutions with 66 or 55 mM K(+), respectively, and action potentials (APs) were triggered in the sealed T-system by field stimulation. Prolonged depolarization of the T-system reduced tetanic force proportionately more than twitch force, with greater effect at higher stimulation frequency (responses at 20 and 100 Hz reduced to 71 and 62% in 66 mM K(+) and to 54 and 35% in 55 mM K(+), respectively). Double-pulse stimulation showed that depolarization increased the repriming period (estimated minimum time before a second AP can be produced) from approximately 4 ms to approximately 7.5 and 15 ms in the 66 and 55 mM K(+) solutions, respectively. These results demonstrate that T-system depolarization reduces tetanic force by impairing AP repriming, rather than by preventing AP generation per se or by inactivating the T-system voltage sensors. The findings also explain why it is advantageous to reduce the rate of motoneuron stimulation to muscles during repeated or prolonged periods of activity.

          Related collections

          Author and article information

          Comments

          Comment on this article