64
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Tunable sieving of ions using graphene oxide membranes

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ion permeation and selectivity of graphene oxide membranes with sub-nm channels dramatically alters with the change in interlayer distance due to dehydration effects whereas permeation of water molecules remains largely unaffected.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Water desalination across nanoporous graphene.

          We show that nanometer-scale pores in single-layer freestanding graphene can effectively filter NaCl salt from water. Using classical molecular dynamics, we report the desalination performance of such membranes as a function of pore size, chemical functionalization, and applied pressure. Our results indicate that the membrane's ability to prevent the salt passage depends critically on pore diameter with adequately sized pores allowing for water flow while blocking ions. Further, an investigation into the role of chemical functional groups bonded to the edges of graphene pores suggests that commonly occurring hydroxyl groups can roughly double the water flux thanks to their hydrophilic character. The increase in water flux comes at the expense of less consistent salt rejection performance, which we attribute to the ability of hydroxyl functional groups to substitute for water molecules in the hydration shell of the ions. Overall, our results indicate that the water permeability of this material is several orders of magnitude higher than conventional reverse osmosis membranes, and that nanoporous graphene may have a valuable role to play for water purification.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Water desalination using nanoporous single-layer graphene.

            By creating nanoscale pores in a layer of graphene, it could be used as an effective separation membrane due to its chemical and mechanical stability, its flexibility and, most importantly, its one-atom thickness. Theoretical studies have indicated that the performance of such membranes should be superior to state-of-the-art polymer-based filtration membranes, and experimental studies have recently begun to explore their potential. Here, we show that single-layer porous graphene can be used as a desalination membrane. Nanometre-sized pores are created in a graphene monolayer using an oxygen plasma etching process, which allows the size of the pores to be tuned. The resulting membranes exhibit a salt rejection rate of nearly 100% and rapid water transport. In particular, water fluxes of up to 10(6) g m(-2) s(-1) at 40 °C were measured using pressure difference as a driving force, while water fluxes measured using osmotic pressure as a driving force did not exceed 70 g m(-2) s(-1) atm(-1).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Enabling graphene oxide nanosheets as water separation membranes.

              We report a novel procedure to synthesize a new type of water separation membrane using graphene oxide (GO) nanosheets such that water can flow through the nanochannels between GO layers while unwanted solutes are rejected by size exclusion and charge effects. The GO membrane was made via layer-by-layer deposition of GO nanosheets, which were cross-linked by 1,3,5-benzenetricarbonyl trichloride, on a polydopamine-coated polysulfone support. The cross-linking not only provided the stacked GO nanosheets with the necessary stability to overcome their inherent dispensability in water environment but also fine-tuned the charges, functionality, and spacing of the GO nanosheets. We then tested the membranes synthesized with different numbers of GO layers to demonstrate their interesting water separation performance. It was found that the GO membrane flux ranged between 80 and 276 LMH/MPa, roughly 4-10 times higher than that of most commercial nanofiltration membranes. Although the GO membrane in the present development stage had a relatively low rejection (6-46%) of monovalent and divalent salts, it exhibited a moderate rejection (46-66%) of Methylene blue and a high rejection (93-95%) of Rhodamine-WT. We conclude the paper by emphasizing that the facile synthesis of a GO membrane exploiting the ideal properties of inexpensive GO materials offers a myriad of opportunities to modify its physicochemical properties, potentially making the GO membrane a next-generation, cost-effective, and sustainable alternative to the long-existing thin-film composite polyamide membranes for water separation applications.
                Bookmark

                Author and article information

                Journal
                Nature Nanotechnology
                Nature Nanotech
                Springer Nature
                1748-3387
                1748-3395
                April 3 2017
                April 3 2017
                : 12
                : 6
                : 546-550
                Article
                10.1038/nnano.2017.21
                28369049
                24dad5cd-937d-4b7b-a09b-32afb72b67cd
                © 2017
                History

                Comments

                Comment on this article