2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Traditional Chinese medicine prescription Shenling BaiZhu powder to treat ulcerative colitis: Clinical evidence and potential mechanisms

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ulcerative colitis (UC), characterized by syndromes including abdominal pain, bloody stool, diarrhea, weight loss, and repeated relapse, is a non-specific inflammatory intestinal disease. In recent years, with the changing dietary habits in China, the incidence of UC has shown an upward trend. UC belongs to the category of recorded as “diarrhea,” “chronic dysentery,” and “hematochezia” in traditional Chinese medicine (TCM), and Shenling BaiZhu powder (SLBZP) is one of the most effective and commonly used prescriptions. In this review, we aim to systematically summarize the clinical application and pharmacological mechanism of SLBZP in the treatment of UC to provide a theoretical basis for its clinical use and experimental evaluation of SLBZP. Our results showed that both SLBZP and SLBZP in combination with chemical drugs, have a significant therapeutic effect against UC with few adverse reactions. Furthermore, combined therapy was better than western medicine. Further, pathophysiological studies indicated that SLBZP has anti-inflammatory, immunomodulatory, antioxidant effects, regulation relative cell signal transduction and regulation of gut microbiota. Although evidence suggests superior therapeutic efficacy of SLBZP for treating UC and the relative mechanism has been studied extensively, various shortcomings limit the existing research on the topic. There is a lack of UC animal models, especially UC with TCM syndromes, with no uniform standard and certain differences between the animal model and clinical syndrome. The dosage, dosage form, and therapeutic time of SLBZP are inconsistent and lack pharmacological verification, and clinical trial data are not detailed or sufficiently rigorous. In addition, SLSZP is composed of multiple Chinese drugs that contain massive numbers of ingredients and which or several components contribute to therapeutic effects. How they work synergistically together remains unknown. Therefore, on the one hand, large sample prospective cohort studies to clarify the clinical efficacy and safety of SLBZP in the treatment of UC are needed. In contrast, researchers should strengthen the study of the molecular biological mechanism of active ingredients and its synergistic actions, clarifying the mechanism of SLBZP in treating UC by multi-component, multi-target, and multi-pathway.

          Related collections

          Most cited references197

          • Record: found
          • Abstract: found
          • Article: not found

          Ulcerative colitis

          Ulcerative colitis is a chronic inflammatory disease affecting the colon, and its incidence is rising worldwide. The pathogenesis is multifactorial, involving genetic predisposition, epithelial barrier defects, dysregulated immune responses, and environmental factors. Patients with ulcerative colitis have mucosal inflammation starting in the rectum that can extend continuously to proximal segments of the colon. Ulcerative colitis usually presents with bloody diarrhoea and is diagnosed by colonoscopy and histological findings. The aim of management is to induce and then maintain remission, defined as resolution of symptoms and endoscopic healing. Treatments for ulcerative colitis include 5-aminosalicylic acid drugs, steroids, and immunosuppressants. Some patients can require colectomy for medically refractory disease or to treat colonic neoplasia. The therapeutic armamentarium for ulcerative colitis is expanding, and the number of drugs with new targets will rapidly increase in coming years.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling.

            Intracellular lipopolysaccharide from Gram-negative bacteria including Escherichia coli, Salmonella typhimurium, Shigella flexneri, and Burkholderia thailandensis activates mouse caspase-11, causing pyroptotic cell death, interleukin-1β processing, and lethal septic shock. How caspase-11 executes these downstream signalling events is largely unknown. Here we show that gasdermin D is essential for caspase-11-dependent pyroptosis and interleukin-1β maturation. A forward genetic screen with ethyl-N-nitrosourea-mutagenized mice links Gsdmd to the intracellular lipopolysaccharide response. Macrophages from Gsdmd(-/-) mice generated by gene targeting also exhibit defective pyroptosis and interleukin-1β secretion induced by cytoplasmic lipopolysaccharide or Gram-negative bacteria. In addition, Gsdmd(-/-) mice are protected from a lethal dose of lipopolysaccharide. Mechanistically, caspase-11 cleaves gasdermin D, and the resulting amino-terminal fragment promotes both pyroptosis and NLRP3-dependent activation of caspase-1 in a cell-intrinsic manner. Our data identify gasdermin D as a critical target of caspase-11 and a key mediator of the host response against Gram-negative bacteria.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pore-forming activity and structural autoinhibition of the gasdermin family.

              Inflammatory caspases cleave the gasdermin D (GSDMD) protein to trigger pyroptosis, a lytic form of cell death that is crucial for immune defences and diseases. GSDMD contains a functionally important gasdermin-N domain that is shared in the gasdermin family. The functional mechanism of action of gasdermin proteins is unknown. Here we show that the gasdermin-N domains of the gasdermin proteins GSDMD, GSDMA3 and GSDMA can bind membrane lipids, phosphoinositides and cardiolipin, and exhibit membrane-disrupting cytotoxicity in mammalian cells and artificially transformed bacteria. Gasdermin-N moved to the plasma membrane during pyroptosis. Purified gasdermin-N efficiently lysed phosphoinositide/cardiolipin-containing liposomes and formed pores on membranes made of artificial or natural phospholipid mixtures. Most gasdermin pores had an inner diameter of 10–14 nm and contained 16 symmetric protomers. The crystal structure of GSDMA3 showed an autoinhibited two-domain architecture that is conserved in the gasdermin family. Structure-guided mutagenesis demonstrated that the liposome-leakage and pore-forming activities of the gasdermin-N domain are required for pyroptosis. These findings reveal the mechanism for pyroptosis and provide insights into the roles of the gasdermin family in necrosis, immunity and diseases.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                06 September 2022
                2022
                : 13
                : 978558
                Affiliations
                [1] 1 Department of Pharmacy , Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University , Lin Hai, China
                [2] 2 Department of Pharmaceutics , School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou, China
                Author notes

                Edited by: Aftab Ullah, Jiangsu University, China

                Reviewed by: Chao-Zhan Lin, Guangzhou University of Chinese Medicine, China

                Tao Yang, Shanghai University of Traditional Chinese Medicine, China

                *Correspondence: Zhengli Jiang, jiangzl@ 123456enzemed.com

                This article was submitted to Ethnopharmacology, a section of the journal Frontiers in Pharmacology

                Article
                978558
                10.3389/fphar.2022.978558
                9494158
                36160392
                250474e8-fb3b-4d7a-9119-804e9eae100d
                Copyright © 2022 Chen, Shen and Jiang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 26 June 2022
                : 15 August 2022
                Categories
                Pharmacology
                Review

                Pharmacology & Pharmaceutical medicine
                shenling baizhu powder,ulcerative colitis,clinical evidence,mechanism,signal pathway

                Comments

                Comment on this article