15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Rate of reaction with nitric oxide determines the hypertensive effect of cell-free hemoglobin.

      Nature biotechnology
      Animals, Oxyhemoglobins, Blood Pressure, administration & dosage, Recombinant Proteins, metabolism, drug effects, blood, Rats, Nitric Oxide, genetics, Rats, Sprague-Dawley, Oxygen Consumption, toxicity, Hemoglobins, chemistry, Free Radical Scavengers, chemically induced, Male, Hypertension

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Administration of extracellular hemoglobin-based oxygen carriers often induces mild increases in blood pressure. In order to test whether nitric oxide (NO) scavenging is responsible for the hypertensive effect, we constructed and tested a set of recombinant hemoglobins that vary in rates of reaction with NO. The results suggest that the rapid reactions of oxy- and deoxyhemoglobin with nitric oxide are the fundamental cause of the hypertension. The magnitude of the blood-pressure effect correlates directly with the in vitro rate of NO oxidation. Hemoglobins with decreased NO-scavenging activity may be more suitable for certain therapeutic applications than those that cause depletion of nitric oxide.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control.

          A dynamic cycle exists in which haemoglobin is S-nitrosylated in the lung when red blood cells are oxygenated, and the NO group is released during arterial-venous transit. The vasoactivity of S-nitrosohaemoglobin is promoted by the erythrocytic export of S-nitrosothiols. These findings highlight newly discovered allosteric and electronic properties of haemoglobin that appear to be involved in the control of blood pressure and which may facilitate efficient delivery of oxygen to tissues. The role of S-nitrosohaemoglobin in the transduction of NO-related activities may have therapeutic applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient.

            The binding of oxygen to heme irons in hemoglobin promotes the binding of nitric oxide (NO) to cysteinebeta93, forming S-nitrosohemoglobin. Deoxygenation is accompanied by an allosteric transition in S-nitrosohemoglobin [from the R (oxygenated) to the T (deoxygenated) structure] that releases the NO group. S-nitrosohemoglobin contracts blood vessels and decreases cerebral perfusion in the R structure and relaxes vessels to improve blood flow in the T structure. By thus sensing the physiological oxygen gradient in tissues, hemoglobin exploits conformation-associated changes in the position of cysteinebeta93 SNO to bring local blood flow into line with oxygen requirements.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oxidation of nitrogen oxides by bound dioxygen in hemoproteins.

              Nitric oxide is unique among the higher oxides of nitrogen in its reactivity and efficiency for the oxidation of oxygen-bound hemoproteins. Dinitrogen trioxide serves as a nitric oxide donor, but dinitrogen tetroxide does not exhibit similar reactivity. Details are provided of the stoichiometric transformation through which nitric oxide is converted to nitrate with accompanying oxidation of myoglobin or hemoglobin to the corresponding iron(III) hemoprotein, including an estimate of the rate constant for nitric oxide oxidation of oxygen-associated myoglobin and the effect of unassociated oxygen on the stoichiometry and rates for nitric oxide oxidation. Evidence is presented to establish the mechanism of oxidation in the direct combination of nitric oxide with iron(II)-bound dioxygen.
                Bookmark

                Author and article information

                Comments

                Comment on this article