7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Anti-inflammatory effects of mesenchymal stem cell-derived exosomal microRNA-146a-5p and microRNA-548e-5p on human trophoblast cells

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human umbilical cord mesenchymal stem cells (MSCs) have been reported to improve the migration and invasion of trophoblast cells; however, little is known about whether MSC-derived exosomes and exosomal miRNAs can regulate trophoblast cell properties. In this study, we investigated whether exosomal miRNAs from amniotic fluid-derived MSC (AF-MSC) could regulate the inflammatory response of the human trophoblast cell line HTR8/SVneo. We verified the anti-inflammatory effects of AF-MSCs on lipopolysaccharide (LPS)-induced inflammatory trophoblast cells and found that miR-146a-5p and miR-548e-5p in the AF-MSC–derived exosomes regulate nuclear factor κB, AKT and mitogen-activated protein kinase protein phosphorylation. Furthermore, we found that the transfection of human trophoblast cells with miR-146a-5p and miR-548e-5p inhibitors reduced trophoblast migration (P < 0.05 vs control) and the expression of proliferating cell nuclear antigen, a protein essential for cell proliferation (P < 0.01 vs control). In particular, the miR-548e-5p inhibitor induced apoptosis, while tumor necrosis factor receptor–associated factor 6, a predicted target of miR-146a-5p and miR-548e-5p, was involved in the regulation of oxidative stress in the human trophoblast cells. In a mouse model of LPS-induced preterm birth (PB), miR-146a-5p expression was found to be relatively low in the group in which the effect of AF-MSCs was insignificant. However, this study is limited in that the changes in the expression of some genes in response to AF-MSCs differ between the cell line and mouse model. Collectively, these data show that exosomal miR-146a-5p and miR-548e-5p from AF-MSCs have anti-inflammatory effects on human trophoblast cells and may be novel targets for treating inflammatory diseases and associated problems that occur during pregnancy, such as PB.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Exosome and Exosomal MicroRNA: Trafficking, Sorting, and Function

          Exosomes are 40–100 nm nano-sized vesicles that are released from many cell types into the extracellular space. Such vesicles are widely distributed in various body fluids. Recently, mRNAs and microRNAs (miRNAs) have been identified in exosomes, which can be taken up by neighboring or distant cells and subsequently modulate recipient cells. This suggests an active sorting mechanism of exosomal miRNAs, since the miRNA profiles of exosomes may differ from those of the parent cells. Exosomal miRNAs play an important role in disease progression, and can stimulate angiogenesis and facilitate metastasis in cancers. In this review, we will introduce the origin and the trafficking of exosomes between cells, display current research on the sorting mechanism of exosomal miRNAs, and briefly describe how exosomes and their miRNAs function in recipient cells. Finally, we will discuss the potential applications of these miRNA-containing vesicles in clinical settings.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Exosomes and Ectosomes in Intercellular Communication

            Exosomes and ectosomes, two distinct types of extracellular vesicles generated by all types of cell, play key roles in intercellular communication. The formation of these vesicles depends on local microdomains assembled in endocytic membranes for exosomes and in the plasma membrane for ectosomes. These microdomains govern the accumulation of proteins and various types of RNA associated with their cytosolic surface, followed by membrane budding inward for exosome precursors and outward for ectosomes. A fraction of endocytic cisternae filled with vesicles - multivesicular bodies - are later destined to undergo regulated exocytosis, leading to the extracellular release of exosomes. In contrast, the regulated release of ectosomes follows promptly after their generation. These two types of vesicle differ in size - 50-150 nm for exosomes and 100-500 nm for ectosomes - and in the mechanisms of assembly, composition, and regulation of release, albeit only partially. For both exosomes and ectosomes, the surface and luminal cargoes are heterogeneous when comparing vesicles released by different cell types or by single cells in different functional states. Upon release, the two types of vesicle navigate through extracellular fluid for varying times and distances. Subsequently, they interact with recognized target cells and undergo fusion with endocytic or plasma membranes, followed by integration of vesicle membranes into their fusion membranes and discharge of luminal cargoes into the cytosol, resulting in changes to cellular physiology. After fusion, exosome/ectosome components can be reassembled in new vesicles that are then recycled to other cells, activating effector networks. Extracellular vesicles also play critical roles in brain and heart diseases and in cancer, and are useful as biomarkers and in the development of innovative therapeutic approaches.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Characterization of human plasma-derived exosomal RNAs by deep sequencing

              Background Exosomes, endosome-derived membrane microvesicles, contain specific RNA transcripts that are thought to be involved in cell-cell communication. These RNA transcripts have great potential as disease biomarkers. To characterize exosomal RNA profiles systemically, we performed RNA sequencing analysis using three human plasma samples and evaluated the efficacies of small RNA library preparation protocols from three manufacturers. In all we evaluated 14 libraries (7 replicates). Results From the 14 size-selected sequencing libraries, we obtained a total of 101.8 million raw single-end reads, an average of about 7.27 million reads per library. Sequence analysis showed that there was a diverse collection of the exosomal RNA species among which microRNAs (miRNAs) were the most abundant, making up over 42.32% of all raw reads and 76.20% of all mappable reads. At the current read depth, 593 miRNAs were detectable. The five most common miRNAs (miR-99a-5p, miR-128, miR-124-3p, miR-22-3p, and miR-99b-5p) collectively accounted for 48.99% of all mappable miRNA sequences. MiRNA target gene enrichment analysis suggested that the highly abundant miRNAs may play an important role in biological functions such as protein phosphorylation, RNA splicing, chromosomal abnormality, and angiogenesis. From the unknown RNA sequences, we predicted 185 potential miRNA candidates. Furthermore, we detected significant fractions of other RNA species including ribosomal RNA (9.16% of all mappable counts), long non-coding RNA (3.36%), piwi-interacting RNA (1.31%), transfer RNA (1.24%), small nuclear RNA (0.18%), and small nucleolar RNA (0.01%); fragments of coding sequence (1.36%), 5′ untranslated region (0.21%), and 3′ untranslated region (0.54%) were also present. In addition to the RNA composition of the libraries, we found that the three tested commercial kits generated a sufficient number of DNA fragments for sequencing but each had significant bias toward capturing specific RNAs. Conclusions This study demonstrated that a wide variety of RNA species are embedded in the circulating vesicles. To our knowledge, this is the first report that applied deep sequencing to discover and characterize profiles of plasma-derived exosomal RNAs. Further characterization of these extracellular RNAs in diverse human populations will provide reference profiles and open new doors for the development of blood-based biomarkers for human diseases.
                Bookmark

                Author and article information

                Contributors
                Journal
                Molecular Human Reproduction
                Oxford University Press (OUP)
                1460-2407
                November 2019
                November 30 2019
                November 2019
                November 30 2019
                October 07 2019
                : 25
                : 11
                : 755-771
                Affiliations
                [1 ]Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
                [2 ]Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea
                Article
                10.1093/molehr/gaz054
                31588496
                26253143-f759-4085-add1-d7e30d39dbd0
                © 2019

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article