32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Avirulence Genes in Cereal Powdery Mildews: The Gene-for-Gene Hypothesis 2.0

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The gene-for-gene hypothesis states that for each gene controlling resistance in the host, there is a corresponding, specific gene controlling avirulence in the pathogen. Allelic series of the cereal mildew resistance genes Pm3 and Mla provide an excellent system for genetic and molecular analysis of resistance specificity. Despite this opportunity for molecular research, avirulence genes in mildews remain underexplored. Earlier work in barley powdery mildew ( B.g. hordei) has shown that the reaction to some Mla resistance alleles is controlled by multiple genes. Similarly, several genes are involved in the specific interaction of wheat mildew ( B.g. tritici) with the Pm3 allelic series. We found that two mildew genes control avirulence on Pm3f: one gene is involved in recognition by the resistance protein as demonstrated by functional studies in wheat and the heterologous host Nicotiana benthamiana. A second gene is a suppressor, and resistance is only observed in mildew genotypes combining the inactive suppressor and the recognized Avr. We propose that such suppressor/avirulence gene combinations provide the basis of specificity in mildews. Depending on the particular gene combinations in a mildew race, different genes will be genetically identified as the “avirulence” gene. Additionally, the observation of two LINE retrotransposon-encoded avirulence genes in B.g. hordei further suggests that the control of avirulence in mildew is more complex than a canonical gene-for-gene interaction. To fully understand the mildew–cereal interactions, more knowledge on avirulence determinants is needed and we propose ways how this can be achieved based on recent advances in the field.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism.

          Powdery mildews are phytopathogens whose growth and reproduction are entirely dependent on living plant cells. The molecular basis of this life-style, obligate biotrophy, remains unknown. We present the genome analysis of barley powdery mildew, Blumeria graminis f.sp. hordei (Blumeria), as well as a comparison with the analysis of two powdery mildews pathogenic on dicotyledonous plants. These genomes display massive retrotransposon proliferation, genome-size expansion, and gene losses. The missing genes encode enzymes of primary and secondary metabolism, carbohydrate-active enzymes, and transporters, probably reflecting their redundancy in an exclusively biotrophic life-style. Among the 248 candidate effectors of pathogenesis identified in the Blumeria genome, very few (less than 10) define a core set conserved in all three mildews, suggesting that most effectors represent species-specific adaptations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis.

            Powdery mildew fungi are obligate biotrophic pathogens that only grow on living hosts and cause damage in thousands of plant species. Despite their agronomical importance, little direct functional evidence for genes of pathogenicity and virulence is currently available because mutagenesis and transformation protocols are lacking. Here, we show that the accumulation in barley (Hordeum vulgare) and wheat (Triticum aestivum) of double-stranded or antisense RNA targeting fungal transcripts affects the development of the powdery mildew fungus Blumeria graminis. Proof of concept for host-induced gene silencing was obtained by silencing the effector gene Avra10, which resulted in reduced fungal development in the absence, but not in the presence, of the matching resistance gene Mla10. The fungus could be rescued from the silencing of Avra10 by the transient expression of a synthetic gene that was resistant to RNA interference (RNAi) due to silent point mutations. The results suggest traffic of RNA molecules from host plants into B. graminis and may lead to an RNAi-based crop protection strategy against fungal pathogens.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses.

              Plant immune responses are triggered by pattern recognition receptors that detect conserved pathogen-associated molecular patterns (PAMPs) or by resistance (R) proteins recognizing isolate-specific pathogen effectors. We show that in barley, intracellular mildew A (MLA) R proteins function in the nucleus to confer resistance against the powdery mildew fungus. Recognition of the fungal avirulence A10 effector by MLA10 induces nuclear associations between receptor and WRKY transcription factors. The identified WRKY proteins act as repressors of PAMP-triggered basal defense. MLA appears to interfere with the WRKY repressor function, thereby de-repressing PAMP-triggered basal defense. Our findings reveal a mechanism by which these polymorphic immune receptors integrate distinct pathogen signals.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                01 March 2016
                2016
                : 7
                : 241
                Affiliations
                Institute of Plant and Microbial Biology, University of Zurich Zurich, Switzerland
                Author notes

                Edited by: Pietro Daniele Spanu, Imperial College London, UK

                Reviewed by: Guus Bakkeren, Agriculture and Agri-Food Canada, Canada; Guido Van Den Ackerveken, Utrecht University, Netherlands

                *Correspondence: Beat Keller, bkeller@ 123456botinst.uzh.ch

                This article was submitted to Plant Biotic Interactions, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2016.00241
                4771761
                26973683
                2633459e-31c2-4adf-9a64-788adf18607f
                Copyright © 2016 Bourras, McNally, Müller, Wicker and Keller.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 29 December 2015
                : 12 February 2016
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 33, Pages: 7, Words: 0
                Funding
                Funded by: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung 10.13039/501100001711
                Award ID: 310030_163260
                Categories
                Plant Science
                Perspective

                Plant science & Botany
                wheat,powdery mildew,resistance gene,avirulence gene,barley
                Plant science & Botany
                wheat, powdery mildew, resistance gene, avirulence gene, barley

                Comments

                Comment on this article