9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      RAI1 gene mutations: mechanisms of Smith–Magenis syndrome

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Smith–Magenis syndrome (SMS; OMIM #182290) is a complex genetic disorder characterized by distinctive physical features, developmental delay, cognitive impairment, and a typical behavioral phenotype. SMS is caused by interstitial 17p11.2 deletions, encompassing multiple genes and including the retinoic acid-induced 1 gene ( RAI1), or by mutations in RAI1 itself. About 10% of all the SMS patients, in fact, carry an RAI1 mutation responsible for the phenotype. RAI1 (OMIM *607642) is a dosage-sensitive gene expressed in many tissues and highly conserved among species. Over the years, several studies have demonstrated that RAI1 (or its homologs in animal models) acts as a transcriptional factor implicated in embryonic neurodevelopment, neuronal differentiation, cell growth and cell cycle regulation, bone and skeletal development, lipid and glucose metabolisms, behavioral functions, and circadian activity. Patients with RAI1 pathogenic variants show some phenotypic differences when compared to those carrying the typical deletion. They usually have lower incidence of hypotonia and less cognitive impairment than those with 17p11.2 deletions but more frequently show the behavioral characteristics of the syndrome and overeating issues. These differences reflect the primary pathogenetic role of RAI1 without the pathogenetic contribution of the other genes included in the typical 17p11.2 deletion. The better comprehension of physiological roles of RAI1, its molecular co-workers and interactors, and its contribution in determining the typical SMS phenotype will certainly open a new path for therapeutic interventions.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: not found

          Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dubé syndrome.

          Birt-Hogg-Dubé (BHD) syndrome is a rare inherited genodermatosis characterized by hair follicle hamartomas, kidney tumors, and spontaneous pneumothorax. Recombination mapping in BHD families delineated the susceptibility locus to 700 kb on chromosome 17p11.2. Protein-truncating mutations were identified in a novel candidate gene in a panel of BHD families, with a 44% frequency of insertion/deletion mutations within a hypermutable C(8) tract. Tissue expression of the 3.8 kb transcript was widespread, including kidney, lung, and skin. The full-length BHD sequence predicted a novel protein, folliculin, that was highly conserved across species. Discovery of disease-causing mutations in BHD, a novel kidney cancer gene associated with renal oncocytoma or chromophobe renal cancer, will contribute to understanding the role of folliculin in pathways common to skin, lung, and kidney development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hyperphagia, severe obesity, impaired cognitive function, and hyperactivity associated with functional loss of one copy of the brain-derived neurotrophic factor (BDNF) gene.

            The neurotrophin brain-derived neurotrophic factor (BDNF) inhibits food intake, and rodent models of BDNF disruption all exhibit increased food intake and obesity, as well as hyperactivity. We report an 8-year-old girl with hyperphagia and severe obesity, impaired cognitive function, and hyperactivity who harbored a de novo chromosomal inversion, 46,XX,inv(11)(p13p15.3), a region encompassing the BDNF gene. We have identified the proximal inversion breakpoint that lies 850 kb telomeric of the 5' end of the BDNF gene. The patient's genomic DNA was heterozygous for a common coding polymorphism in BDNF, but monoallelic expression was seen in peripheral lymphocytes. Serum concentration of BDNF protein was reduced compared with age- and BMI-matched subjects. Haploinsufficiency for BDNF was associated with increased ad libitum food intake, severe early-onset obesity, hyperactivity, and cognitive impairment. These findings provide direct evidence for the role of the neurotrophin BDNF in human energy homeostasis, as well as in cognitive function, memory, and behavior.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Characterization of Potocki-Lupski syndrome (dup(17)(p11.2p11.2)) and delineation of a dosage-sensitive critical interval that can convey an autism phenotype.

              The duplication 17p11.2 syndrome, associated with dup(17)(p11.2p11.2), is a recently recognized syndrome of multiple congenital anomalies and mental retardation and is the first predicted reciprocal microduplication syndrome described--the homologous recombination reciprocal of the Smith-Magenis syndrome (SMS) microdeletion (del(17)(p11.2p11.2)). We previously described seven subjects with dup(17)(p11.2p11.2) and noted their relatively mild phenotype compared with that of individuals with SMS. Here, we molecularly analyzed 28 additional patients, using multiple independent assays, and also report the phenotypic characteristics obtained from extensive multidisciplinary clinical study of a subset of these patients. Whereas the majority of subjects (22 of 35) harbor the homologous recombination reciprocal product of the common SMS microdeletion (~3.7 Mb), 13 subjects (~37%) have nonrecurrent duplications ranging in size from 1.3 to 15.2 Mb. Molecular studies suggest potential mechanistic differences between nonrecurrent duplications and nonrecurrent genomic deletions. Clinical features observed in patients with the common dup(17)(p11.2p11.2) are distinct from those seen with SMS and include infantile hypotonia, failure to thrive, mental retardation, autistic features, sleep apnea, and structural cardiovascular anomalies. We narrow the critical region to a 1.3-Mb genomic interval that contains the dosage-sensitive RAI1 gene. Our results refine the critical region for Potocki-Lupski syndrome, provide information to assist in clinical diagnosis and management, and lend further support for the concept that genomic architecture incites genomic instability.
                Bookmark

                Author and article information

                Journal
                Appl Clin Genet
                Appl Clin Genet
                The Application of Clinical Genetics
                The Application of Clinical Genetics
                Dove Medical Press
                1178-704X
                2017
                03 November 2017
                : 10
                : 85-94
                Affiliations
                [1 ]Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
                [2 ]Department of Translational Medical Sciences (DISMET), Section of Pediatric Clinical Genetics, University of Naples “Federico II”, Naples, Italy
                Author notes
                Correspondence: Fabio Acquaviva, Department of Translational Medical Sciences (DISMET), Section of Pediatric Clinical Genetics, University of Naples “Federico II”, via S. Pansini, 5, 80131, Naples, Italy, Email fabio.acquaviv@ 123456gmail.com
                [*]

                These authors contributed equally to this work

                Article
                tacg-10-085
                10.2147/TACG.S128455
                5680963
                29138588
                264046d1-fadb-4e84-9d8c-aeb92d947c08
                © 2017 Falco et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Review

                17p11.2,neurogenesis,sleep disorders,syndromic obesity,craniofacial abnormalities

                Comments

                Comment on this article