7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome-Wide Association Study Reveals Candidate Genes for Litter Size Traits in Pelibuey Sheep

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          Reproductive traits are economically important in the livestock industry, and this is of greater relevance when it comes to indigenous animals, since their study allows improving their use and management. Through a genome-wide association study (GWAS), the reproductive trait of the litter size (prolificity) was analyzed in the indigenous Pelibuey sheep. Several single-nucleotide polymorphisms (SNPs) and candidate genes potentially associated with litter size trait were found in the multiparous ewe’s group. These findings help to understand the genetic basis of reproductive traits of hairy Pelibuey sheep.

          Abstract

          The Pelibuey sheep has adaptability to climatic variations, resistance to parasites, and good maternal ability, whereas some ewes present multiple births, which increases the litter size in farm sheep. The litter size in some wool sheep breeds is associated with the presence of mutations, mainly in the family of the transforming growth factor β (TGF-β) genes. To explore genetic mechanisms underlying the variation in litter size, we conducted a genome-wide association study in two groups of Pelibuey sheep (multiparous sheep with two lambs per birth vs. uniparous sheep with a single lamb at birth) using the OvineSNP50 BeadChip. We identified a total of 57 putative SNPs markers ( p < 3.0 × 10 −3, Bonferroni correction). The candidate genes that may be associated with litter size in Pelibuey sheep are CLSTN2, MTMR2, DLG1, CGA, ABCG5, TRPM6, and HTR1E. Genomic regions were also identified that contain three quantitative trait loci (QTLs) for aseasonal reproduction (ASREP), milk yield (MY), and body weight (BW). These results allowed us to identify SNPs associated with genes that could be involved in the reproductive process related to prolificacy.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: not found

          A note on exact tests of Hardy-Weinberg equilibrium.

          Deviations from Hardy-Weinberg equilibrium (HWE) can indicate inbreeding, population stratification, and even problems in genotyping. In samples of affected individuals, these deviations can also provide evidence for association. Tests of HWE are commonly performed using a simple chi2 goodness-of-fit test. We show that this chi2 test can have inflated type I error rates, even in relatively large samples (e.g., samples of 1,000 individuals that include approximately 100 copies of the minor allele). On the basis of previous work, we describe exact tests of HWE together with efficient computational methods for their implementation. Our methods adequately control type I error in large and small samples and are computationally efficient. They have been implemented in freely available code that will be useful for quality assessment of genotype data and for the detection of genetic association or population stratification in very large data sets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            JBrowse: a dynamic web platform for genome visualization and analysis

            Background JBrowse is a fast and full-featured genome browser built with JavaScript and HTML5. It is easily embedded into websites or apps but can also be served as a standalone web page. Results Overall improvements to speed and scalability are accompanied by specific enhancements that support complex interactive queries on large track sets. Analysis functions can readily be added using the plugin framework; most visual aspects of tracks can also be customized, along with clicks, mouseovers, menus, and popup boxes. JBrowse can also be used to browse local annotation files offline and to generate high-resolution figures for publication. Conclusions JBrowse is a mature web application suitable for genome visualization and analysis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gene annotation and pathway mapping in KEGG.

              KEGG is a database resource (http://www.genome.jp/kegg/) that provides all knowledge about genomes and their relationships to biological systems such as cells and whole organisms as well as their interactions with the environment. KEGG is categorized in terms of building blocks in the genomic space, known as KEGG GENES, the chemical space, KEGG LIGAND, as well as wiring diagrams of interaction and reaction networks, known as KEGG PATHWAY. A fourth database called KEGG BRITE was also recently incorporated to provide computerized annotations and pathway reconstruction based on the current KEGG knowledgebase. KEGG BRITE contains KEGG Orthology (KO), a classification of ortholog and paralog groups based on highly confident sequence similarity scores, and the reaction classification system for biochemical reaction classification, along with other classifications for compounds and drugs. BRITE is also the basis for the KEGG Automatic Annotation Server (KAAS), which automatically annotates a given set of genes and correspondingly generates pathway maps. This chapter introduces KEGG and its various tools for genomic analyses, focusing on the usage of the KEGG GENES, PATHWAY, and BRITE resources and the KAAS tool (see Note 1).
                Bookmark

                Author and article information

                Journal
                Animals (Basel)
                Animals (Basel)
                animals
                Animals : an Open Access Journal from MDPI
                MDPI
                2076-2615
                04 March 2020
                March 2020
                : 10
                : 3
                : 434
                Affiliations
                [1 ]TecNM/Instituto Tecnológico de Conkal, Av. Tecnológico S/N, Conkal, Yucatán 97345, Mexico; wilber.hernandez@ 123456itconkal.edu.mx (W.H.-M.); julio.ramon@ 123456itconkal.edu.mx (J.P.R.-U.)
                [2 ]Departamento de Ciencias Agropecuarias, Universidad del Papaloapan, Loma Bonita Oaxaca 68400, Mexico
                [3 ]UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sierra Papacal-Chuburna Km 5, Mérida, Yucatán 97302, Mexico; mamn@ 123456ciencias.unam.mx
                [4 ]Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, INIFAP, Ajuchitlán Colón, Querétaro 76280, Mexico; chagoya_91@ 123456hotmail.com
                Author notes
                [* ]Correspondence: roman.sergio@ 123456inifap.gob.mx (S.I.R.-P.); roberto.zamora@ 123456itconkal.edu.mx (R.Z.-B.); Tel.: +52-5538718700 (ext. 80208) (S.I.R.-P.); +52-999-341-0860 (ext. 7631) (R.Z.-B.)
                Author information
                https://orcid.org/0000-0001-8907-2542
                https://orcid.org/0000-0002-6704-6578
                https://orcid.org/0000-0002-4502-1492
                Article
                animals-10-00434
                10.3390/ani10030434
                7143297
                32143402
                26830d5d-5f4f-4201-9154-56e2c9627ace
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 08 January 2020
                : 29 February 2020
                Categories
                Article

                prolificacy,pelibuey sheep,genome-wide association study

                Comments

                Comment on this article