22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Anti-connective tissue growth factor (CTGF/CCN2) monoclonal antibody attenuates skin fibrosis in mice models of systemic sclerosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Systemic sclerosis (SSc) is characterized by fibrosis of the skin and internal organs. Although the involvement of connective tissue growth factor (CTGF/CCN2) has been well-documented in SSc fibrosis, the therapeutic potential of targeting CTGF in SSc has not been fully investigated. Our aim was to examine the therapeutic potential of CTGF blockade in a preclinical model of SSc using two approaches: smooth muscle cell fibroblast-specific deletion of CTGF (CTGF knockout (KO)) or a human anti-CTGF monoclonal antibody, FG-3019.

          Methods

          Angiotensin II (Ang II) was administered for 14 days by subcutaneous osmotic pump to CTGF KO or C57BL/6 J mice. FG-3019 was administered intraperitoneally three times per week for 2 weeks. Skin fibrosis was evaluated by histology and hydroxyproline assay. Immunohistochemistry staining was used for alpha smooth muscle actin (αSMA), platelet-derived growth factor receptor β (PDGFRβ), pSmad2, CD45, von Willebrand factor (vWF), and immunofluorescence staining was utilized for procollagen and Fsp1.

          Results

          Ang II-induced skin fibrosis was mitigated in both CTGF KO and FG-3019-treated mice. The blockade of CTGF reduced the number of cells expressing PDGFRβ, procollagen, αSMA, pSmad2, CD45, and Fsp1 in the dermis. In addition, inhibition of CTGF attenuated vascular injury as measured by the presence of vWF-positive cells.

          Conclusions

          Our data indicate that inhibition of CTGF signaling presents an attractive therapeutic approach in SSc.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          von Willebrand factor, Jedi knight of the bloodstream.

          When blood vessels are cut, the forces in the bloodstream increase and change character. The dark side of these forces causes hemorrhage and death. However, von Willebrand factor (VWF), with help from our circulatory system and platelets, harnesses the same forces to form a hemostatic plug. Force and VWF function are so closely intertwined that, like members of the Jedi Order in the movie Star Wars who learn to use "the Force" to do good, VWF may be considered the Jedi knight of the bloodstream. The long length of VWF enables responsiveness to flow. The shape of VWF is predicted to alter from irregularly coiled to extended thread-like in the transition from shear to elongational flow at sites of hemostasis and thrombosis. Elongational force propagated through the length of VWF in its thread-like shape exposes its monomers for multimeric binding to platelets and subendothelium and likely also increases affinity of the A1 domain for platelets. Specialized domains concatenate and compact VWF during biosynthesis. A2 domain unfolding by hydrodynamic force enables postsecretion regulation of VWF length. Mutations in VWF in von Willebrand disease contribute to and are illuminated by VWF biology. I attempt to integrate classic studies on the physiology of hemostatic plug formation into modern molecular understanding, and point out what remains to be learned.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transforming growth factor β--at the centre of systemic sclerosis.

            Transforming growth factor β (TGF-β) has long been implicated in fibrotic diseases, including the multisystem fibrotic disease systemic sclerosis (SSc). Expression of TGF-β-regulated genes in fibrotic skin and lungs of patients with SSc correlates with disease activity, which points to this cytokine as the central mediator of pathogenesis. Patients with SSc often develop pulmonary arterial hypertension (PAH), a particularly lethal complication caused by vascular dysfunction. Several genetic diseases with vascular features related to SSc, such as familial PAH and hereditary haemorrhagic telangiectasia, are caused by mutations in the TGF-β-sensing ALK-1 signalling pathway. These observations suggest that increased TGF-β signalling causes both vascular and fibrotic features of SSc. The question of how latent TGF-β becomes activated in local SSc tissues is, therefore, central to the understanding of SSc. Both TGF-β1 and TGF-β3 can be activated by integrins αvβ6 and αvβ8, whose upregulation in bronchial epithelial cells can activate TGF-β in SSc lungs. Other αv integrins, thrombospondin-1 or altered TGF-β sequestration by matrix proteins might be important in other target tissues. How the immune system triggers this process remains unclear, although links between inflammation and TGF-β activation are emerging. Together, these observations provide an increasingly secure framework for understanding TGF-β in SSc pathogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Cooperative interaction of CTGF and TGF-β in animal models of fibrotic disease

              Background Connective tissue growth factor (CTGF) is widely thought to promote the development of fibrosis in collaboration with transforming growth factor (TGF)-β; however, most of the evidence for its involvement comes from correlative and culture-based studies. In this study, the importance of CTGF in tissue fibrosis was directly examined in three murine models of fibrotic disease: a novel model of multiorgan fibrosis induced by repeated intraperitoneal injections of CTGF and TGF-β2; the unilateral ureteral obstruction (UUO) renal fibrosis model; and an intratracheal bleomycin instillation model of pulmonary fibrosis. Results Intraperitoneal coadministration of CTGF and TGF-β2 elicited a profound fibrotic response that was inhibited by the human anti-CTGF antibody FG-3019, as indicated by the ability of FG-3019 to ameliorate the histologic signs of fibrosis and reduce the otherwise increased hydroxyproline:proline (Hyp:Pro) ratios by 25% in kidney (P < 0.05), 30% in liver (P < 0.01) and 63% in lung (P < 0.05). Moreover, administration of either cytokine alone failed to elicit a fibrotic response, thus demonstrating that CTGF is both necessary and sufficient to initiate fibrosis in the presence of TGF-β and vice versa. In keeping with this requirement for CTGF function in fibrosis, FG-3019 also reduced the renal Hyp:Pro response up to 20% after UUO (P < 0.05). In bleomycin-injured animals, a similar trend towards a FG-3019 treatment effect was observed (38% reduction in total lung Hyp, P = 0.056). Thus, FG-3019 antibody treatment consistently reduced excessive collagen deposition and the pathologic severity of fibrosis in all models. Conclusion Cooperative interactions between CTGF and TGF-β signaling are required to elicit overt tissue fibrosis. This interdependence and the observed anti-fibrotic effects of FG-3019 indicate that anti-CTGF therapy may provide therapeutic benefit in different forms of fibroproliferative disease.
                Bookmark

                Author and article information

                Contributors
                617-638-4318 , trojanme@bu.edu
                Journal
                Arthritis Res Ther
                Arthritis Res. Ther
                Arthritis Research & Therapy
                BioMed Central (London )
                1478-6354
                1478-6362
                13 June 2017
                13 June 2017
                2017
                : 19
                : 134
                Affiliations
                [1 ]ISNI 0000 0004 0367 5222, GRID grid.475010.7, Arthritis Center, , Boston University School of Medicine, ; 72 East Concord Street, E-5, Boston, MA 02118 USA
                [2 ]ISNI 0000 0004 0409 3312, GRID grid.421404.7, , FibroGen, Inc, ; San Francisco, CA USA
                [3 ]ISNI 0000 0004 1936 8884, GRID grid.39381.30, Departments of Dentistry and Physiology and Pharmacology, Schulich School of Medicine and Dentistry, , University of Western Ontario, Dental Sciences Building, ; London, ON Canada
                Author information
                http://orcid.org/0000-0001-9550-7178
                Article
                1356
                10.1186/s13075-017-1356-3
                5470189
                28610597
                26a0f341-a6aa-4e82-b2f6-aa82825e26e2
                © The Author(s). 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 14 February 2017
                : 30 May 2017
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000069, National Institute of Arthritis and Musculoskeletal and Skin Diseases;
                Award ID: R01 AR44883
                Award Recipient :
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2017

                Orthopedics
                angiotensin ii,ctgf/ccn2,fg-3019,fibrosis,skin,systemic sclerosis
                Orthopedics
                angiotensin ii, ctgf/ccn2, fg-3019, fibrosis, skin, systemic sclerosis

                Comments

                Comment on this article