2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hyperoxic Exposure Caused Lung Lipid Compositional Changes in Neonatal Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Treatments with supplemental oxygen in premature infants can impair lung development, leading to bronchopulmonary dysplasia (BPD). Although a stage-specific alteration of lung lipidome occurs during postnatal lung development, whether neonatal hyperoxia, a known mediator of BPD in rodent models, changes lipid profiles in mouse lungs is still to be elucidated. To answer this question, newborn mice were exposed to hyperoxia for 3 days and allowed to recover in normoxia until postnatal day (pnd) 7 and pnd14, time-points spanning the peak stage of alveologenesis. A total of 2263 lung lipid species were detected by liquid chromatography–mass spectrometry, covering 5 lipid categories and 18 lipid subclasses. The most commonly identified lipid species were glycerophospholipids, followed by sphingolipids and glycerolipids. In normoxic conditions, certain glycerophospholipid and glycerolipid species augmented at pnd14 compared to pnd7. At pnd7, hyperoxia generally increased glycerophospholipid, sphingolipid, and glycerolipid species. Hyperoxia increased NADPH, acetyl CoA, and citrate acid but reduced carnitine and acyl carnitine. Hyperoxia increased oxidized glutathione but reduced catalase. These changes were not apparent at pnd14. Hyperoxia reduced docosahexaenoic acid and arachidonic acid at pnd14 but not at pnd7. Altogether, the lung lipidome changes throughout alveolarization. Neonatal hyperoxia alters the lung lipidome, which may contribute to alveolar simplification and dysregulated vascular development.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Bronchopulmonary dysplasia

          In the absence of effective interventions to prevent preterm births, improved survival of infants who are born at the biological limits of viability has relied on advances in perinatal care over the past 50 years. Except for extremely preterm infants with suboptimal perinatal care or major antenatal events that cause severe respiratory failure at birth, most extremely preterm infants now survive, but they often develop chronic lung dysfunction termed bronchopulmonary dysplasia (BPD; also known as chronic lung disease). Despite major efforts to minimize injurious but often life-saving postnatal interventions (such as oxygen, mechanical ventilation and corticosteroids), BPD remains the most frequent complication of extreme preterm birth. BPD is now recognized as the result of an aberrant reparative response to both antenatal injury and repetitive postnatal injury to the developing lungs. Consequently, lung development is markedly impaired, which leads to persistent airway and pulmonary vascular disease that can affect adult lung function. Greater insights into the pathobiology of BPD will provide a better understanding of disease mechanisms and lung repair and regeneration, which will enable the discovery of novel therapeutic targets. In parallel, clinical and translational studies that improve the classification of disease phenotypes and enable early identification of at-risk preterm infants should improve trial design and individualized care to enhance outcomes in preterm infants.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors.

            Programmed death (apoptosis) is turned on in damaged or unwanted cells to secure their clean and safe self-elimination. The initial apoptotic events are coordinated in mitochondria, whereby several proapoptotic factors, including cytochrome c, are released into the cytosol to trigger caspase cascades. The release mechanisms include interactions of B-cell/lymphoma 2 family proteins with a mitochondria-specific phospholipid, cardiolipin, to cause permeabilization of the outer mitochondrial membrane. Using oxidative lipidomics, we showed that cardiolipin is the only phospholipid in mitochondria that undergoes early oxidation during apoptosis. The oxidation is catalyzed by a cardiolipin-specific peroxidase activity of cardiolipin-bound cytochrome c. In a previously undescribed step in apoptosis, we showed that oxidized cardiolipin is required for the release of proapoptotic factors. These results provide insight into the role of reactive oxygen species in triggering the cell-death pathway and describe an early role for cytochrome c before caspase activation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Animal models of bronchopulmonary dysplasia. The term mouse models.

              The etiology of bronchopulmonary dysplasia (BPD) is multifactorial, with genetics, ante- and postnatal sepsis, invasive mechanical ventilation, and exposure to hyperoxia being well described as contributing factors. Much of what is known about the pathogenesis of BPD is derived from animal models being exposed to the environmental factors noted above. This review will briefly cover the various mouse models of BPD, focusing mainly on the hyperoxia-induced lung injury models. We will also include hypoxia, hypoxia/hyperoxia, inflammation-induced, and transgenic models in room air. Attention to the stage of lung development at the timing of the initiation of the environmental insult and the duration of lung injury is critical to attempt to mimic the human disease pulmonary phenotype, both in the short term and in outcomes extending into childhood, adolescence, and adulthood. The various indexes of alveolar and vascular development as well as pulmonary function including pulmonary hypertension will be highlighted. The advantages (and limitations) of using such approaches will be discussed in the context of understanding the pathogenesis of and targeting therapeutic interventions to ameliorate human BPD.
                Bookmark

                Author and article information

                Journal
                Metabolites
                Metabolites
                metabolites
                Metabolites
                MDPI
                2218-1989
                21 August 2020
                September 2020
                : 10
                : 9
                : 340
                Affiliations
                [1 ]Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA; abigail_peterson@ 123456brown.edu (A.L.P.); jennifer_carr@ 123456brown.edu (J.F.C.); phyllis_dennery@ 123456brown.edu (P.A.D.)
                [2 ]Department of Nutrition, Byrdine F. Lewis School of Nursing and Health Professions, Georgia State University, Atlanta, GA 30302, USA; xji4@ 123456gsu.edu
                [3 ]Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI 02912, USA
                Author notes
                [* ]Correspondence: Hongwei_Yao@ 123456brown.edu ; Tel.: +401-863-6754
                Author information
                https://orcid.org/0000-0001-5745-1855
                Article
                metabolites-10-00340
                10.3390/metabo10090340
                7569933
                32825609
                26ce67d9-b454-471d-a4ed-b39adee75218
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 08 July 2020
                : 20 August 2020
                Categories
                Article

                bronchopulmonary dysplasia,lung alveolarization,lipidomics,metabolomics,oxidative stress

                Comments

                Comment on this article