31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      PIERNIK mhd code - a multi-fluid, non-ideal extension of the relaxing-TVD scheme (III)

      Preprint
      , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present a new multi-fluid, grid MHD code PIERNIK, which is based on the Relaxing TVD scheme (Jin & Xin, 1995). The original scheme (see Trac & Pen (2003) and Pen et al. (2003)) has been extended by an addition of dynamically independent, but interacting fluids: dust and a diffusive cosmic ray gas, described within the fluid approximation, with an option to add other fluids in an easy way. The code has been equipped with shearing-box boundary conditions, and a selfgravity module, Ohmic resistivity module, as well as other facilities which are useful in astrophysical fluid-dynamical simulations. The code is parallelized by means of the MPI library. In this paper we present Ohmic resistivity extension of the original Relaxing TVD MHD scheme, and show examples of magnetic reconnection in cases of uniform and current-dependent resistivity prescriptions.

          Related collections

          Most cited references1

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A Primer on Eulerian Computational Fluid Dynamics for Astrophysics

          We present a pedagogical review of some of the methods employed in Eulerian computational fluid dynamics (CFD). Fluid mechanics is governed by the Euler equations, which are conservation laws for mass, momentum, and energy. The standard approach to Eulerian CFD is to divide space into finite volumes or cells and store the cell-averaged values of conserved hydro quantities. The integral Euler equations are then solved by computing the flux of the mass, momentum, and energy across cell boundaries. We review both first-order and second-order flux assignment schemes. All linear schemes are either dispersive or diffusive. The nonlinear, second-order accurate total variation diminishing (TVD) approach provides high resolution capturing of shocks and prevents unphysical oscillations. We review the relaxing TVD scheme, a simple and robust method to solve systems of conservation laws like the Euler equations. A 3-D relaxing TVD code is applied to the Sedov-Taylor blast wave test. The propagation of the blast wave is accurately captured and the shock front is sharply resolved. We apply a 3-D self-gravitating hydro code to simulating the formation of blue straggler stars through stellar mergers and present some numerical results. A sample 3-D relaxing TVD code is provided in the appendix.
            Bookmark

            Author and article information

            Journal
            28 December 2008
            Article
            10.1051/eas/1256059
            0812.4839
            2797877b-1f9b-404e-878d-6fc70d4f35bf

            http://arxiv.org/licenses/nonexclusive-distrib/1.0/

            History
            Custom metadata
            4 pages, 3 figures, proceedings of The Role of Disk-Halo Interaction in Galaxy Evolution: Outflow vs Infall, 2008, Espinho
            astro-ph

            Comments

            Comment on this article