0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Run-away transition to turbulent strong-field dynamo

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Planets and stars are able to generate coherent large-scale magnetic fields by helical convective motions in their interiors. This process, known as hydromagnetic dynamo, involves nonlinear interaction between the flow and magnetic field. Nonlinearity facilitates existence of bi-stable dynamo branches: a weak field branch where the magnetic field is not strong enough to enter into the leading order force balance in the momentum equation at large flow scales, and a strong field branch where the field enters into this balance. The transition between the two with enhancement of convection can be either subcritical or supercritical, depending on the strength of magnetic induction. In both cases, it is accompanied by topological changes in velocity field across the system; however, it is yet unclear how these changes are produced. In this work, we analyse transitions between the weak and strong dynamo regimes using a data-driven approach, separating different physical effects induced by dynamically active flow scales. Using Dynamic Mode Decomposition, we decompose the dynamo data from direct numerical simulations into different components (modes), identify the ones relevant for transition, and estimate relative magnitudes of their contributions Lorentz force and induction term. Our results suggest that subcritical transition to a strong dynamo is facilitated by a subharmonic instability, allowing for a more efficient mode of convection, and provide a modal basis for reduced-order models of this transition.

          Related collections

          Author and article information

          Journal
          14 May 2024
          Article
          2405.10981
          27cb649d-1b62-4cd3-8e4b-ac8e54c6ee32

          http://creativecommons.org/licenses/by/4.0/

          History
          Custom metadata
          physics.flu-dyn astro-ph.EP astro-ph.SR

          Planetary astrophysics,Thermal physics & Statistical mechanics,Solar & Stellar astrophysics

          Comments

          Comment on this article