9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The antimorphic nature of the Tc allele at the mouse T locus.

      Genomics
      Alleles, Animals, Chromosome Mapping, DNA, analysis, isolation & purification, DNA Probes, Genetic Complementation Test, Haplotypes, Mice, Mice, Inbred Strains, Phenotype

      Read this article at

      ScienceOpenPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The T locus on mouse chromosome 17 is haploid-insufficient: deletion/+ heterozygous mice have a short tail. One exceptional allele, Tc, produces a tailless phenotype in heterozygous mice. Thus, Tc has a more severe phenotype than that of a deletion allele, suggesting either that Tc is further deleted for a neighboring locus, resulting in the additional phenotype, or that Tc is a gain-of-function mutation. We have shown that Tc is not deleted for the D17Leh119 and D17RP17 loci flanking T, which are deleted in some T alleles. Thus, the severity of the Tc phenotype is not due to the deletion of an adjacent locus. We have also examined the genetic nature of the Tc allele by placing it in trans with a T-locus duplication, twLub2, which has previously been independently confirmed at the molecular level to have a duplication in the chromosomal region including the T locus. We have shown that Tc is partially complemented by twLub2, unlike a null allele (deletion) which was previously shown to be fully complemented by twLub2. These results indicate that Tc behaves genetically as an antimorph, exerting its effect by antagonizing the function of a wild-type allele at the T locus. The apparent correlation between the gene dosage at the T locus and the length of the body axis is discussed.

          Related collections

          Author and article information

          Comments

          Comment on this article