39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Listening Effort: How the Cognitive Consequences of Acoustic Challenge Are Reflected in Brain and Behavior

      review-article
       
      Ear and Hearing
      Williams And Wilkins
      Acoustic challenge, Aging, Listening effort, Speech comprehension, Working memory

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Everyday conversation frequently includes challenges to the clarity of the acoustic speech signal, including hearing impairment, background noise, and foreign accents. Although an obvious problem is the increased risk of making word identification errors, extracting meaning from a degraded acoustic signal is also cognitively demanding, which contributes to increased listening effort. The concepts of cognitive demand and listening effort are critical in understanding the challenges listeners face in comprehension, which are not fully predicted by audiometric measures. In this article, the authors review converging behavioral, pupillometric, and neuroimaging evidence that understanding acoustically degraded speech requires additional cognitive support and that this cognitive load can interfere with other operations such as language processing and memory for what has been heard. Behaviorally, acoustic challenge is associated with increased errors in speech understanding, poorer performance on concurrent secondary tasks, more difficulty processing linguistically complex sentences, and reduced memory for verbal material. Measures of pupil dilation support the challenge associated with processing a degraded acoustic signal, indirectly reflecting an increase in neural activity. Finally, functional brain imaging reveals that the neural resources required to understand degraded speech extend beyond traditional perisylvian language networks, most commonly including regions of prefrontal cortex, premotor cortex, and the cingulo-opercular network. Far from being exclusively an auditory problem, acoustic degradation presents listeners with a systems-level challenge that requires the allocation of executive cognitive resources. An important point is that a number of dissociable processes can be engaged to understand degraded speech, including verbal working memory and attention-based performance monitoring. The specific resources required likely differ as a function of the acoustic, linguistic, and cognitive demands of the task, as well as individual differences in listeners’ abilities. A greater appreciation of cognitive contributions to processing degraded speech is critical in understanding individual differences in comprehension ability, variability in the efficacy of assistive devices, and guiding rehabilitation approaches to reducing listening effort and facilitating communication.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: not found

          A dual-networks architecture of top-down control.

          Complex systems ensure resilience through multiple controllers acting at rapid and slower timescales. The need for efficient information flow through complex systems encourages small-world network structures. On the basis of these principles, a group of regions associated with top-down control was examined. Functional magnetic resonance imaging showed that each region had a specific combination of control signals; resting-state functional connectivity grouped the regions into distinct 'fronto-parietal' and 'cingulo-opercular' components. The fronto-parietal component seems to initiate and adjust control; the cingulo-opercular component provides stable 'set-maintenance' over entire task epochs. Graph analysis showed dense local connections within components and weaker 'long-range' connections between components, suggesting a small-world architecture. The control systems of the brain seem to embody the principles of complex systems, encouraging resilient performance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The cognitive neuroscience of ageing.

            The availability of neuroimaging technology has spurred a marked increase in the human cognitive neuroscience literature, including the study of cognitive ageing. Although there is a growing consensus that the ageing brain retains considerable plasticity of function, currently measured primarily by means of functional MRI, it is less clear how age differences in brain activity relate to cognitive performance. The field is also hampered by the complexity of the ageing process itself and the large number of factors that are influenced by age. In this Review, current trends and unresolved issues in the cognitive neuroscience of ageing are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Speech recognition with primarily temporal cues.

              Nearly perfect speech recognition was observed under conditions of greatly reduced spectral information. Temporal envelopes of speech were extracted from broad frequency bands and were used to modulate noises of the same bandwidths. This manipulation preserved temporal envelope cues in each band but restricted the listener to severely degraded information on the distribution of spectral energy. The identification of consonants, vowels, and words in simple sentences improved markedly as the number of bands increased; high speech recognition performance was obtained with only three bands of modulated noise. Thus, the presentation of a dynamic temporal pattern in only a few broad spectral regions is sufficient for the recognition of speech.
                Bookmark

                Author and article information

                Journal
                Ear Hear
                Ear Hear
                AUD
                Ear and Hearing
                Williams And Wilkins
                0196-0202
                1538-4667
                March 2018
                23 February 2018
                : 39
                : 2
                : 204-214
                Affiliations
                Department of Otolaryngology, Washington University in Saint Louis, Saint Louis, Missouri, USA.
                Author notes
                Address for correspondence: Jonathan Peelle, Department of Otolaryngology, Washington University in Saint Louis, 660 South Euclid, Box 8115, Saint Louis, MO 63110. E-mail: jpeelle@ 123456wustl.edu
                Article
                00004
                10.1097/AUD.0000000000000494
                5821557
                28938250
                29a35d31-0760-4425-8446-ea48965bfdf4
                Copyright © 2017 The Authors. Ear & Hearing is published on behalf of the American Auditory Society, by Wolters Kluwer Health, Inc.

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

                History
                : 28 January 2017
                : 28 July 2017
                Categories
                Review
                Custom metadata
                TRUE

                acoustic challenge,aging,listening effort,speech comprehension,working memory

                Comments

                Comment on this article