92
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Interactome of the Plant-specific ESCRT-III Component AtVPS2.2 in Arabidopsis thaliana

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The endosomal sorting complexes required for transport (ESCRT) guides transmembrane proteins to domains that bud away from the cytoplasm. The ESCRT machinery consists of four complexes. ESCRT complexes 0–II are important for cargo recognition and concentration via ubiquitin binding. Most of the membrane bending function is mediated by the large multimeric ESCRT-III complex and associated proteins. Here we present the first in vivo proteome analysis of a member of the ESCRT-III complex which is unique to the plant kingdom. We show with LC–MS/MS, yeast-two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) that coimmunoprecipitated proteins from Arabidopsis thaliana roots expressing a functional GFP-tagged VACUOLAR PROTEIN SORTING 2.2 (AtVPS2.2) protein are members of the ESCRT-III complex and associated proteins. Therefore we propose that at least in plants the large ESCRT-III membrane scaffolding complex consists of a mixture of SNF7, VPS2 and the associated VPS46 and VPS60 proteins. Apart from transmembrane proteins, numerous membrane-associated but also nuclear and extracellular proteins have been identified, indicating that AtVPS2.2 might be involved in processes beyond the classical ESCRT role. This study is the first in vivo proteome analysis with a tagged ESCRT-III component demonstrating the feasibility of this approach and provides numerous starting points for the investigation of the biological process in which AtVPS2.2 is involved.

          Abstract

          The endosomal sorting complexes required for transport (ESCRT) guides transmembrane proteins to domains that bud away from the cytoplasm. Most of the membrane bending function is mediated by the ESCRT-III complex. Proteomic analysis was used to identify novel ESCRT-III interactors of Arabidopsis thaliana seedlings expressing a functional GFP-tagged VACUOLAR PROTEIN SORTING2.2 as bait. Some intractors were confirmed by yeast-two-hybrid and bimolecular fluorescence complementation and others will be the target for future investigations.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular Mechanism of Multivesicular Body Biogenesis by ESCRT Complexes

          When internalized receptors and other cargo are destined for lysosomal degradation, they are ubiquitinated and sorted by the ESCRT complexes 0, I, II, and III into multivesicular bodies. Multivesicular bodies are formed when cargo-rich patches of the limiting membrane of endosomes bud inward by an unknown mechanism and are then cleaved to yield cargo-bearing intralumenal vesicles. The biogenesis of multivesicular bodies was reconstituted and visualized using giant unilamellar vesicles, fluorescent ESCRT-0, I, II, and III complexes, and a membrane-tethered fluorescent ubiquitin fusion as a model cargo. ESCRT-0 forms domains of clustered cargo but does not deform membranes. ESCRT-I and II in combination deform the membrane into buds, in which cargo is confined. ESCRT-I and II localize to the bud necks, and recruit ESCRT-0-ubiquitin domains to the buds. ESCRT-III subunits localize to the bud neck and efficiently cleave the buds to form intralumenal vesicles. Intralumenal vesicles produced in this reaction contain the model cargo but are devoid of ESCRTs. The observations explain how the ESCRTs direct membrane budding and scission from the cytoplasmic side of the bud without being consumed in the reaction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Receptor downregulation and multivesicular-body sorting.

            The sorting of proteins into the inner vesicles of multivesicular bodies is required for many key cellular processes, which range from the downregulation of activated signalling receptors to the proper stimulation of the immune response. Recent advances in our understanding of the multivesicular-body sorting pathway have resulted from the identification of ubiquitin as a signal for the efficient sorting of proteins into this transport route, and from the discovery of components of the sorting and regulatory machinery that directs this complex process.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Membrane scission by the ESCRT-III complex.

              The endosomal sorting complex required for transport (ESCRT) system is essential for multivesicular body biogenesis, in which cargo sorting is coupled to the invagination and scission of intralumenal vesicles. The ESCRTs are also needed for budding of enveloped viruses including human immunodeficiency virus 1, and for membrane abscission in cytokinesis. In Saccharomyces cerevisiae, ESCRT-III consists of Vps20, Snf7, Vps24 and Vps2 (also known as Did4), which assemble in that order and require the ATPase Vps4 for their disassembly. In this study, the ESCRT-III-dependent budding and scission of intralumenal vesicles into giant unilamellar vesicles was reconstituted and visualized by fluorescence microscopy. Here we show that three subunits of ESCRT-III, Vps20, Snf7 and Vps24, are sufficient to detach intralumenal vesicles. Vps2, the ESCRT-III subunit responsible for recruiting Vps4, and the ATPase activity of Vps4 were required for ESCRT-III recycling and supported additional rounds of budding. The minimum set of ESCRT-III and Vps4 proteins capable of multiple cycles of vesicle detachment corresponds to the ancient set of ESCRT proteins conserved from archaea to animals.
                Bookmark

                Author and article information

                Journal
                J Proteome Res
                pr
                jprobs
                Journal of Proteome Research
                American Chemical Society
                1535-3893
                1535-3907
                19 October 2011
                01 January 2012
                : 11
                : 1 , Microbial and Plant Proteomics
                : 397-411
                Affiliations
                []Department of Applied Genetics and Cell Biology, BOKU-simpleUniversity of Natural Resources and Life Sciences , Muthgasse 18, A-1190 Vienna, Austria
                []Max F. Perutz Laboratories, Department of Biochemistry, simpleMass Spectrometry Facility , Doktor-Bohr-Gasse 3, A-1030 Vienna, Austria
                Author notes
                [* ]Marie-Theres Hauser, Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria +43-1-36006-6371 (phone), +43-1-36006-6371 (fax), marie-theres.hauser@ 123456boku.ac.at (e-mail).
                Article
                10.1021/pr200845n
                3252797
                22010978
                2a632cd4-8265-48bb-913d-55a9cd301c2b
                Copyright © 2011 American Chemical Society

                This is an open-access article distributed under the ACS AuthorChoice Terms & Conditions. Any use of this article, must conform to the terms of that license which are available at http://pubs.acs.org.

                History
                : 31 August 2011
                : 07 November 2011
                : 01 January 2012
                : 19 October 2011
                Categories
                Article
                Custom metadata
                pr200845n
                pr-2011-00845n

                Molecular biology
                bimolecular fluorescence complementation,gfp-tagged,yeast two-hybrid,coimmunioprecipitation,lc−ms/ms,atvps2.2,escrt-iii,dynamins,in vivo

                Comments

                Comment on this article