14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Use of Atomic Force Microscopy to Study the Multi-Modular Interaction of Bacterial Adhesins to Mucins

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The mucus layer covering the gastrointestinal (GI) epithelium is critical in selecting and maintaining homeostatic interactions with our gut bacteria. However, the molecular details of these interactions are not well understood. Here, we provide mechanistic insights into the adhesion properties of the canonical mucus-binding protein (MUB), a large multi-repeat cell–surface adhesin found in Lactobacillus inhabiting the GI tract. We used atomic force microscopy to unravel the mechanism driving MUB-mediated adhesion to mucins. Using single-molecule force spectroscopy we showed that MUB displayed remarkable adhesive properties favouring a nanospring-like adhesion model between MUB and mucin mediated by unfolding of the multiple repeats constituting the adhesin. We obtained direct evidence for MUB self-interaction; MUB–MUB followed a similar binding pattern, confirming that MUB modular structure mediated such mechanism. This was in marked contrast with the mucin adhesion behaviour presented by Galectin-3 (Gal-3), a mammalian lectin characterised by a single carbohydrate binding domain (CRD). The binding mechanisms reported here perfectly match the particular structural organization of MUB, which maximizes interactions with the mucin glycan receptors through its long and linear multi-repeat structure, potentiating the retention of bacteria within the outer mucus layer.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Galectin-3: an open-ended story.

          Galectins, an ancient lectin family, are characterized by specific binding of beta-galactosides through evolutionary conserved sequence elements of carbohydrate-recognition domain (CRD). A structurally unique member of the family is galectin-3; in addition to the CRD it contains a proline- and glycine-rich N-terminal domain (ND) through which is able to form oligomers. Galectin-3 is widely spread among different types of cells and tissues, found intracellularly in nucleus and cytoplasm or secreted via non-classical pathway outside of cell, thus being found on the cell surface or in the extracellular space. Through specific interactions with a variety of intra- and extracellular proteins galectin-3 affects numerous biological processes and seems to be involved in different physiological and pathophysiological conditions, such as development, immune reactions, and neoplastic transformation and metastasis. The review attempts to summarize the existing information on structural, biochemical and intriguing functional properties of galectin-3.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human- mucus binding protein.

            To unravel the biological function of the widely used probiotic bacterium Lactobacillus rhamnosus GG, we compared its 3.0-Mbp genome sequence with the similarly sized genome of L. rhamnosus LC705, an adjunct starter culture exhibiting reduced binding to mucus. Both genomes demonstrated high sequence identity and synteny. However, for both strains, genomic islands, 5 in GG and 4 in LC705, punctuated the colinearity. A significant number of strain-specific genes were predicted in these islands (80 in GG and 72 in LC705). The GG-specific islands included genes coding for bacteriophage components, sugar metabolism and transport, and exopolysaccharide biosynthesis. One island only found in L. rhamnosus GG contained genes for 3 secreted LPXTG-like pilins (spaCBA) and a pilin-dedicated sortase. Using anti-SpaC antibodies, the physical presence of cell wall-bound pili was confirmed by immunoblotting. Immunogold electron microscopy showed that the SpaC pilin is located at the pilus tip but also sporadically throughout the structure. Moreover, the adherence of strain GG to human intestinal mucus was blocked by SpaC antiserum and abolished in a mutant carrying an inactivated spaC gene. Similarly, binding to mucus was demonstrated for the purified SpaC protein. We conclude that the presence of SpaC is essential for the mucus interaction of L. rhamnosus GG and likely explains its ability to persist in the human intestinal tract longer than LC705 during an intervention trial. The presence of mucus-binding pili on the surface of a nonpathogenic Gram-positive bacterial strain reveals a previously undescribed mechanism for the interaction of selected probiotic lactobacilli with host tissues.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals.

              A dense mucus layer in the large intestine prevents inflammation by shielding the underlying epithelium from luminal bacteria and food antigens. This mucus barrier is organized around the hyperglycosylated mucin MUC2. Here we show that the small intestine has a porous mucus layer, which permitted the uptake of MUC2 by antigen-sampling dendritic cells (DCs). Glycans associated with MUC2 imprinted DCs with anti-inflammatory properties by assembling a galectin-3-Dectin-1-FcγRIIB receptor complex that activated β-catenin. This transcription factor interfered with DC expression of inflammatory but not tolerogenic cytokines by inhibiting gene transcription through nuclear factor κB. MUC2 induced additional conditioning signals in intestinal epithelial cells. Thus, mucus does not merely form a nonspecific physical barrier, but also constrains the immunogenicity of gut antigens by delivering tolerogenic signals.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                08 November 2016
                November 2016
                : 17
                : 11
                : 1854
                Affiliations
                [1 ]The Gut Health and Food Safety Institute Strategic Programme, Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, UK; Devon.Kavanaugh@ 123456ifr.ac.uk (D.K.); Elizabeth.Thursby@ 123456ifr.ac.uk (E.T.); sabrinaetzold1@ 123456gmail.com (S.E.); d.mackenzie91@ 123456btinternet.com (D.A.M.)
                [2 ]Division of Neonatology and Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, School of Medicine, University of California San Diego, 9500 Gilman Drive, San Diego, CA 92093-0715, USA
                Author notes
                [* ]Correspondence: patrick.gunning@ 123456ifr.ac.uk (A.P.G.); nathalie.juge@ 123456ifr.ac.uk (N.J.); Tel.: +44-1603-255-201 (A.P.G.); +44-1603-255-068 (N.J.); Fax: +44-1603-507-723 (A.P.G. & N.J.)
                Article
                ijms-17-01854
                10.3390/ijms17111854
                5133854
                27834807
                2bc381b7-e0b0-4a74-bb6b-05802950b84f
                © 2016 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 09 September 2016
                : 02 November 2016
                Categories
                Article

                Molecular biology
                atomic force microscopy,single molecule force spectroscopy,intestinal mucin,mucus binding protein,bacterial adhesins,gut microbiota,lactobacillus reuteri

                Comments

                Comment on this article