2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Uterine flushing proteome of the tammar wallaby after reactivation from diapause

      , , , ,
      Reproduction
      Bioscientifica

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The marsupial tammar wallaby has the longest period of embryonic diapause of any mammal, up to 11 months, during which there is no cell division or blastocyst growth. Since the blastocyst in diapause is surrounded by acellular coats, the signals that maintain or terminate diapause involve factors that reside in uterine secretions. The nature of such factors remains to be resolved. In this study, uterine flushings (UFs) were used to assess changes in uterine secretions of tammars using liquid chromatography–mass spectrometry (LC–MS/MS) during diapause (day 0 and 3) and reactivation days (d) 4, 5, 6, 8, 9, 11 and 24 after removal of pouch young (RPY), which initiates embryonic development. This study supports earlier suggestions that the presence of specific factors stimulate reactivation, early embryonic growth and cell proliferation. A mitogen, hepatoma-derived growth factor and soluble epidermal growth factor receptors were observed from d3 until at least d11 RPY when these secreted proteins constituted 21% of the UF proteome. Binding of these factors to specific cellular receptors or growth factors may directly stimulate DNA synthesis and division in endometrial gland cells. Proteins involved in the p53/CDKN1A (p21) cell cycle inhibition pathway were also observed in the diapause samples. Progesterone and most of the oestrogen-regulated proteins were present in the UF after d3, which is concomitant with the start of blastocyst mitoses at d4. We propose that once the p21 inhibition of the cell cycle is lost, growth factors including HDGF and EGFR are responsible for reactivation of the diapausing blastocyst via the uterine secretions.

          Related collections

          Most cited references136

          • Record: found
          • Abstract: found
          • Article: not found

          Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells.

          Exosomes are vesicles of endocytic origin released by many cells. These vesicles can mediate communication between cells, facilitating processes such as antigen presentation. Here, we show that exosomes from a mouse and a human mast cell line (MC/9 and HMC-1, respectively), as well as primary bone marrow-derived mouse mast cells, contain RNA. Microarray assessments revealed the presence of mRNA from approximately 1300 genes, many of which are not present in the cytoplasm of the donor cell. In vitro translation proved that the exosome mRNAs were functional. Quality control RNA analysis of total RNA derived from exosomes also revealed presence of small RNAs, including microRNAs. The RNA from mast cell exosomes is transferable to other mouse and human mast cells. After transfer of mouse exosomal RNA to human mast cells, new mouse proteins were found in the recipient cells, indicating that transferred exosomal mRNA can be translated after entering another cell. In summary, we show that exosomes contain both mRNA and microRNA, which can be delivered to another cell, and can be functional in this new location. We propose that this RNA is called "exosomal shuttle RNA" (esRNA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Exosomes: extracellular organelles important in intercellular communication.

            In addition to intracellular organelles, eukaryotic cells also contain extracellular organelles that are released, or shed, into the microenvironment. These membranous extracellular organelles include exosomes, shedding microvesicles (SMVs) and apoptotic blebs (ABs), many of which exhibit pleiotropic biological functions. Because extracellular organelle terminology is often confounding, with many preparations reported in the literature being mixtures of extracellular vesicles, there is a growing need to clarify nomenclature and to improve purification strategies in order to discriminate the biochemical and functional activities of these moieties. Exosomes are formed by the inward budding of multivesicular bodies (MVBs) and are released from the cell into the microenvironment following the fusion of MVBs with the plasma membrane (PM). In this review we focus on various strategies for purifying exosomes and discuss their biophysical and biochemical properties. An update on proteomic analysis of exosomes from various cell types and body fluids is provided and host-cell specific proteomic signatures are also discussed. Because the ectodomain of ~42% of exosomal integral membrane proteins are also found in the secretome, these vesicles provide a potential source of serum-based membrane protein biomarkers that are reflective of the host cell. ExoCarta, an exosomal protein and RNA database (http://exocarta.ludwig.edu.au), is described. Copyright © 2010 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Probability-based protein identification by searching sequence databases using mass spectrometry data

              Several algorithms have been described in the literature for protein identification by searching a sequence database using mass spectrometry data. In some approaches, the experimental data are peptide molecular weights from the digestion of a protein by an enzyme. Other approaches use tandem mass spectrometry (MS/MS) data from one or more peptides. Still others combine mass data with amino acid sequence data. We present results from a new computer program, Mascot, which integrates all three types of search. The scoring algorithm is probability based, which has a number of advantages: (i) A simple rule can be used to judge whether a result is significant or not. This is particularly useful in guarding against false positives. (ii) Scores can be compared with those from other types of search, such as sequence homology. (iii) Search parameters can be readily optimised by iteration. The strengths and limitations of probability-based scoring are discussed, particularly in the context of high throughput, fully automated protein identification.
                Bookmark

                Author and article information

                Journal
                Reproduction
                Bioscientifica
                1470-1626
                1741-7899
                November 2016
                November 2016
                November 2016
                November 2016
                : 152
                : 5
                : 491-505
                Article
                10.1530/REP-16-0154
                2bceb2c4-e00f-412f-aade-db8475c11c9c
                © 2016

                Free to read

                History

                Comments

                Comment on this article