27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Potent and Targeted Activation of Latent HIV-1 Using the CRISPR/dCas9 Activator Complex

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          HIV-1 provirus integration results in a persistent latently infected reservoir that is recalcitrant to combined antiretroviral therapy (cART) with lifelong treatment being the only option. The “shock and kill” strategy aims to eradicate latent HIV by reactivating proviral gene expression in the context of cART treatment. Gene-specific transcriptional activation can be achieved using the RNA-guided CRISPR-Cas9 system comprising single guide RNAs (sgRNAs) with a nuclease-deficient Cas9 mutant (dCas9) fused to the VP64 transactivation domain (dCas9-VP64). We engineered this system to target 23 sites within the long terminal repeat promoter of HIV-1 and identified a “hotspot” for activation within the viral enhancer sequence. Activating sgRNAs transcriptionally modulated the latent proviral genome across multiple different in vitro latency cell models including T cells comprising a clonally integrated mCherry-IRES-Tat (LChIT) latency system. We detected consistent and effective activation of latent virus mediated by activator sgRNAs, whereas latency reversal agents produced variable activation responses. Transcriptomic analysis revealed dCas9-VP64/sgRNAs to be highly specific, while the well-characterized chemical activator TNFα induced widespread gene dysregulation. CRISPR-mediated gene activation represents a novel system which provides enhanced efficiency and specificity in a targeted latency reactivation strategy and represents a promising approach to a “functional cure” of HIV/AIDS.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Epigenome editing by a CRISPR/Cas9-based acetyltransferase activates genes from promoters and enhancers

          Technologies that facilitate the targeted manipulation of epigenetic marks could be used to precisely control cell phenotype or interrogate the relationship between the epigenome and transcriptional control. Here we have generated a programmable acetyltransferase based on the CRISPR/Cas9 gene regulation system, consisting of the nuclease-null dCas9 protein fused to the catalytic core of the human acetyltransferase p300. This fusion protein catalyzes acetylation of histone H3 lysine 27 at its target sites, corresponding with robust transcriptional activation of target genes from promoters, proximal enhancers, and distal enhancers. Gene activation by the targeted acetyltransferase is highly specific across the genome. In contrast to conventional dCas9-based activators, the acetyltransferase effectively activates genes from enhancer regions and with individual guide RNAs. The core p300 domain is also portable to other programmable DNA-binding proteins. These results support targeted acetylation as a causal mechanism of transactivation and provide a new robust tool for manipulating gene regulation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements.

            Prokaryotes contain short DN repeats known as CRISPR, recognizable by the regular spacing existing between the recurring units. They represent the most widely distributed family of repeats among prokaryotic genomes suggesting a biological function. The origin of the intervening sequences, at present unknown, could provide clues about their biological activities. Here we show that CRISPR spacers derive from preexisting sequences, either chromosomal or within transmissible genetic elements such as bacteriophages and conjugative plasmids. Remarkably, these extrachromosomal elements fail to infect the specific spacer-carrier strain, implying a relationship between CRISPR and immunity against targeted DNA. Bacteriophages and conjugative plasmids are involved in prokaryotic population control, evolution, and pathogenicity. All these biological traits could be influenced by the presence of specific spacers. CRISPR loci can be visualized as mosaics of a repeated unit, separated by sequences at some time present elsewhere in the cell.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CRISPR RNA-guided activation of endogenous human genes

              Catalytically inactive CRISPR-associated 9 nuclease (dCas9) can be directed by short guide RNAs (gRNAs) to repress endogenous genes in bacteria and human cells. Here we show that a dCas9-VP64 transcriptional activation domain fusion protein can be directed by single or multiple gRNAs to increase expression of specific endogenous human genes. These results provide an important proof-of-principle that CRISPR-Cas systems can be used to target heterologous effector domains in human cells.
                Bookmark

                Author and article information

                Journal
                Mol Ther
                Mol. Ther
                Molecular Therapy
                Nature Publishing Group
                1525-0016
                1525-0024
                March 2016
                19 November 2015
                05 January 2016
                1 March 2016
                : 24
                : 3
                : 488-498
                Affiliations
                [1 ]Department of Molecular and Experimental Medicine, The Scripps Research Institute , La Jolla, California, USA
                [2 ]HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, School of Pathology, University of the Witwatersrand , Johannesburg, South Africa
                [3 ]Division of Molecular Biology, Beckman Research Institute at the City of Hope , Duarte, California, USA
                [4 ]Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine , Salt Lake City, Utah, USA
                [5 ]School of Biotechnology and Biomedical Sciences, University of New South Wales , Kensington, New South Wales, Australia
                [6 ]Wits/SA MRC Antiviral Gene Therapy Research Unit, Department of Molecular Medicine and Haematology, University of the Witwatersrand , Johannesburg, South Africa
                Author notes
                [* ]Department of Molecular and Haematology, School of Pathology, University of the Witwatersrand, Parktown, South Africa. E-mail: marcow@ 123456scripps.edu
                []

                The first two authors are co-first authors.

                Article
                mt2015202
                10.1038/mt.2015.202
                4786915
                26581162
                2ce2b14d-d5ee-41ee-b6a0-e6be40afba2c
                Copyright © 2016 Official journal of the American Society of Gene & Cell Therapy

                This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/

                History
                : 27 August 2015
                : 23 October 2015
                Categories
                Original Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article